

    
      
          
            
  
Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.





          

      

      

    

  

    
      
          
            

Index



 




          

      

      

    

  

    
      
          
            
  
Code of Conduct


Our Pledge

In the interest of fostering an open and welcoming environment, we as contributors and maintainers pledge to making participation in our project and our community a harassment-free experience for everyone, regardless of age, body size, disability, ethnicity, gender identity and expression, level of experience, nationality, personal appearance, race, religion, or sexual identity and orientation.




Our Standards

Examples of behavior that contributes to creating a positive environment include:


	Using welcoming and inclusive language


	Being respectful of differing viewpoints and experiences


	Gracefully accepting constructive criticism


	Focusing on what is best for the community


	Showing empathy towards other community members




Examples of unacceptable behavior by participants include:


	The use of sexualized language or imagery and unwelcome sexual attention or advances


	Trolling, insulting/derogatory comments, and personal or political attacks


	Public or private harassment


	Publishing others’ private information, such as a physical or electronic address, without explicit permission


	Other conduct which could reasonably be considered inappropriate in a professional setting







Our Responsibilities

Project maintainers are responsible for clarifying the standards of acceptable behavior and are expected to take appropriate and fair corrective action in response to any instances of unacceptable behavior.

Project maintainers have the right and responsibility to remove, edit, or reject comments, commits, code, wiki edits, issues, and other contributions that are not aligned to this Code of Conduct, or to ban temporarily or permanently any contributor for other behaviors that they deem inappropriate, threatening, offensive, or harmful.




Scope

This Code of Conduct applies both within project spaces and in public spaces when an individual is representing the project or its community. Examples of representing a project or community include using an official project e-mail address, posting via an official social media account, or acting as an appointed representative at an online or offline event. Representation of a project may be further defined and clarified by project maintainers.




Enforcement

Instances of abusive, harassing, or otherwise unacceptable behavior may be reported by contacting the project team in gitter or irc. The project team will review and investigate all complaints, and will respond in a way that it deems appropriate to the circumstances. The project team is obligated to maintain confidentiality with regard to the reporter of an incident. Further details of specific enforcement policies may be posted separately.

Project maintainers who do not follow or enforce the Code of Conduct in good faith may face temporary or permanent repercussions as determined by other members of the project’s leadership.




Attribution

This Code of Conduct is adapted from the Contributor Covenant [http://contributor-covenant.org], version 1.4, available at http://contributor-covenant.org/version/1/4 [http://contributor-covenant.org/version/1/4/]







          

      

      

    

  

    
      
          
            
  
Coding Guidelines


Basics


	Stick to the principles of Object Oriented Design


	Leave the code cleaner than you have found it


	Use comments to describe the why, not the how


	Don’t repeat apparent information in the comments




game.pause(); //pause the game








Planning


	One branch per feature/bugfix


	Split up any task that will take longer than a week


	Merge branches back as soon as possible







Conventions


Naming


	No cryptic abbreviations in names (well known abb. are fine e.g. HTML).




Observer *GmObsvrPtr; //not worth it








File encoding and line endings


	The source files may be restricted to ASCII encoding, or use UTF-8 without BOM (this warning specifically targets developers using Windows).


	Line endings may be LF or CRLF, although the former is preferred. CR line endings are not valid.


	Encoding conversion macros (L"", _T(""), T(""), …) are considered a plague and will be rejected (unless they are in platform-dependent source files which only gets compiled on those platforms).







Preprocessor


Include guards

Include guards have an uppercase name reflecting the current header file name, and are terminated by _HPP.

They are not to be prefixed or suffixed by any underscore.

In fact, all global names (that includes defines) starting with one underscore and a capital letter or two underscores are reserved by the C and C++ standard.
As of the 2012-01-16 C++11 Working Draft, this is specified in 17.6.4.3.2/1 [global.names].

(Yet, many developers keep using this bad practice)

As a side note for MSVC developers: #pragma once isn’t an include guard and can’t replace nor even supplement it. Except for Windows-specific source files, any file containing it will be rejected.






Indentation, whitespace and line length


	An indentation level = two spaces. Tabs aren’t considered a consistent identation method.


	Empty lines are not to be idented, i.e. /really/ empty.


	There may not be more than 2 consecutive empty lines.


	Namespace blocks does not indent, nor are switch case labels.


	When additional identation would make the code more legible (e.g. chained variable declarations),
more spaces can be added if their count is low; else, just increase the identation level by one.


	Trailing whitespace isn’t allowed.


	Maximum line length is 100 UTF-8 codepoints. In layman terms, 100 characters.




namespace glPortal {

void func() {
  int i = 0;
  switch (i) {
  case 0:
    break;
  default:
    break;
  }

  // The following is correct, additional whitespace is low
  int a = 1,
      b = 2,
      c = 3;

  // The following isn't correct, too much whitespace
  std::unique_ptr<int> ptrA(new int),
                       ptrB(new int);

  // Use the following instead:
  std::unique_ptr<int> ptrC(new int), ptrD(new int), ptrE(new int), ptrF(new int), ptrG(new int),
    ptrH(new int);
  // Here, the line wrapped because we hit the 100-character limit
}

}








Pointer and References

Pointer/reference mark sticks to the variable name (not function name), or when there is no variable name, to the type itself.

Type var1, *var2, &var3 = thing;
Type* getPtr(Type *namedParm);
Type& getRef(UnnamedParm*);

// The following is bad style:
Type *badGetPtr(Type *namedParm);
// because it doesn't return Type, it returns Type* !
// Moreover the function name has nothing to do with that pointer mark on it.








Blocks of code


	Always open a new block of code after a control structure


	Open them on the line of the control statement


	Put code on the next line




if (cond) {
  code();
}

// The following is bad:
if (cond)
{
  code();
}

if (cond)
  code();

if (cond) code();













          

      

      

    

  

    
      
          
            
  
Compile Guide for GlPortal


Build with Visual Studio

If you want to compile with Visual Studio please have a look at compile instructions for VS [https://github.com/GlPortal/glportal-vs].
Building is only possible in Visual Studio 2017, as earlier versions do not support the requied C++14 language features.




Dependencies

NOTE: Dependencies will change all the time so watch the cmake output for missing libraries.
Make sure to check CMakeLists.txt if something is missing.

Follow the RadixEngine compile instructions first. You can find them in the RadixEngine repository in a file named COMPILE.md.
The instructions cover how to upgrade your system and how to install most of the dependencies.




Downloading source code

In your favorite console, run these commands:

git clone https://github.com/GlPortal/glPortal.git
cd glPortal
git submodule update --init --recursive








Building the binary

Make sure to check the README.md and COMPILE.md from the release you downloaded in case
there are differences in the compile workflow for it.


Setting up the build directory

In the root directory of the downloaded source type:


Linux

cmake ./;








Windows

mkdir build && cd build
cmake .. -G "MSYS Makefiles" -DCMAKE_MAKE_PROGRAM="mingw32-make"





If you want to profile the source code pass -DCMAKE_CXX_FLAGS=-pg to cmake.

If you encounter an error during this step use the
bugtracker https://github.com/GlPortal/glPortal/issues to report an issue.

If the command did not produce an error, you can build the binary by typing in:






Building


Linux

make








Windows

mingw32-make










Running

If this produces no error you have built the binary and should be able to start GlPortal by typing in:


Linux

make run








Windows

Before we can start the game it is necessary to copy some dlls into our executable directory.


on 32-bit

cp /mingw32/bin/{libLinearMath,SDL2{,_mixer},libtinyxml2,libgcc_s_dw2-1,libstdc++-6,libmodplug-1,libvorbisfile-3,libvorbis-0,libogg-0,libassimp,libBulletCollision,libBulletDynamics,libepoxy-0,libwinpthread-1,libfluidsynth-1,libminizip-1,zlib1,libFLAC-8,libmad-0,libbz2-1,libglib-2.0-0,libportaudio-2,libsndfile-1,libintl-8,libspeex-1,libvorbisenc-2,libiconv-2}.dll source








on 64-bit

cp /mingw64/bin/{libLinearMath,SDL2{,_mixer},libtinyxml2,libgcc_s_seh-1,libstdc++-6,libmodplug-1,libvorbisfile-3,libvorbis-0,libogg-0,libassimp,libBulletCollision,libBulletDynamics,libepoxy-0,libwinpthread-1,libfluidsynth-1,libminizip-1,zlib1,libFLAC-8,libmad-0,libbz2-1,libglib-2.0-0,libportaudio-2,libsndfile-1,libintl-8,libspeex-1,libvorbisenc-2,libiconv-2,libpcre-1}.dll source








Run

mingw32-make run





If you get errors, try to build GlPortal again. If you don’t manage to fix the error, use the
bugtracker https://github.com/GlPortal/glPortal/issues or http://bugs.glportal.de to report what you did, and what error you got.










Build with docker

Building with docker is still in early testing and not feature complete. It will make compiling easier in the future.

docker run -it --rm -w /data -v $(pwd):/data glportal/gcc bash -c "cmake ./; make"





To run the game type:

source/glportal --datadir ./data








Keep us posted

Not working? No worries! Help us help you figure out what we missed to make this work on
your system by opening an issue.







          

      

      

    

  

    
      
          
            
  
GlPortal Contribution Guide

If you want to become part of the team or you need help, please say hi in gitter [https://gitter.im/GlPortal/glPortal?utm_source=badge&utm_medium=badge&utm_campaign=pr-badge&utm_content=badge] or irc [http://webchat.freenode.net/?channels=%23glportal&uio=d4]. Please refer to the contribution guide [http://contribute.glportal.de].


Developer


	Follow the compile guide [https://github.com/GlPortal/glPortal/blob/master/COMPILE.md] to compile the game.


	Check the bugtracker [https://bugs.glportal.de/] for tasks you want to do or add your own.


	Send a pull request on github.







Artist


	Contact us through gitter or irc.





Composers


	Check our music guidelines [https://github.com/GlPortal/specification/blob/master/music.md].


	Optionaly add your note-sheets to our repository [https://github.com/GlPortal/music].


	Add your licence and tracks to raw data repository [https://github.com/GlPortal/glportal_raw_data/tree/master/audio/music].









Quality Control


	If there is anything wrong with a commit do one of the following


	Only if you can’t fix it yourself comment objectively on the commit and tell the commiter exactly what the commit breaks. If you don’t do this polite don’t expect anyone to answer you or implement your wish.


	Implement the change yourself and if you are not sure if everybody will agree then propose the change as a pull request.











Writers


	Create a github account


	Learn how to use github in the browser [https://help.github.com/articles/github-flow-in-the-browser/]


	Learn how to edit files in other peoples repository [https://help.github.com/articles/editing-files-in-another-user-s-repository/]










          

      

      

    

  

    
      
          
            
  
Contributors


Programming


Team


	Henry Hirsch (since 2013)


	Julian Thijssen (since 2014)


	Dorian Wouters (since 2014)


	Geert Custers (since 2016)







Contributors

See List of Contributors [https://github.com/GlPortal/glPortal/graphs/contributors]




Graphics


	Jason Pulkkinen - GlPortal logo







Music


	Benji Inniger












          

      

      

    

  

    
      
          
            
  
zlib License

Copyright (c) 2017 GlPortal Team: Julian Thijssen, Henry HirschOriginal Software (c) 2012 Simon Jonas LarsenComplete List of Contributors [https://github.com/GlPortal/glPortal/graphs/contributors]

This software is provided ‘as-is’, without any express or implied
warranty. In no event will the authors be held liable for any damages
arising from the use of this software.

Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it
freely, subject to the following restrictions:


	The origin of this software must not be misrepresented; you must not
claim that you wrote the original software. If you use this software
in a product, an acknowledgment in the product documentation would be
appreciated but is not required.


	Altered source versions must be plainly marked as such, and must not be
misrepresented as being the original software.


	This notice may not be removed or altered from any source
distribution.








          

      

      

    

  

    
      
          
            
  [image: Build Status] [https://travis-ci.org/GlPortal/glPortal]
[image: Join the chat at https://gitter.im/GlPortal/glPortal] [https://gitter.im/GlPortal/glPortal?utm_source=badge&utm_medium=badge&utm_campaign=pr-badge&utm_content=badge]
[image: Join Chat] [http://kiwiirc.com/client/irc.freenode.com/#glportal]
[image: Contributors] [http://stats.glportal.de/]
[image: Documentation Status] [http://specification.glportal.de/en/latest/?badge=latest]

Donate Bitcoin to 1JxrwJZgV9qBeEPH7BDF9qLJPSDcp6fqxz to help us pay for hosting and domain names.


GlPortal


For instructions on how to compile the game please read the compile guide.




GlPortal is an Open Source sci-fi first person puzzle-platformer with realistic physic simulation.
It runs on all modern operating systems including GNU/Linux, Mac and Windows.
You can find the website at http://glportal.de .

Chat with us at irc.freenode.org in the channel #glportal [http://kiwiirc.com/client/irc.freenode.com/#glportal].


  
    
    <no title>
    

    
 
  

    
      
          
            
  

name: Bug report
about: Create a report to help us improve



Describe the bug
A clear and concise description of what the bug is.

To Reproduce
Steps to reproduce the behavior:


	

	

	

	



Expected behavior
A clear and concise description of what you expected to happen.

Screenshots
If applicable, add screenshots to help explain your problem.

Desktop (please complete the following information):


	OS:


	Version




Additional context
Add any other context about the problem here.



          

      

      

    

  

  
    
    <no title>
    

    
 
  

    
      
          
            
  

name: Feature request
about: Suggest an idea for this project



Is your feature request related to a problem? Please describe.
A clear and concise description of what the problem is. Ex. I’m always frustrated when […]

Describe the solution you’d like
A clear and concise description of what you want to happen.

Describe alternatives you’ve considered
A clear and concise description of any alternative solutions or features you’ve considered.

Additional context
Add any other context or screenshots about the feature request here.



          

      

      

    

  

  
    
    <no title>
    

    
 
  

    
      
          
            
  CC0 2016 Clint Bellanger
http://opengameart.org/content/very-low-poly-human



          

      

      

    

  

  
    
    License
    

    
 
  

    
      
          
            
  
License

Provided by Nobiax.

CC0 Absolutely free to use or to modify in any kind of work (personal, commercial or else).

nobiax.deviantart.com
OpenGameArt.com
ShareCG.com





          

      

      

    

  

  
    
    License
    

    
 
  

    
      
          
            
  
License

http://opengameart.org/content/industrial-extension-pack-4-more-tanks
Provided by rubberduck.

CC0 Absolutely free to use or to modify in any kind of work (personal, commercial or else).





          

      

      

    

  

  
    
    License
    

    
 
  

    
      
          
            
  
License

Published by Spiney under
http://creativecommons.org/licenses/by/3.0/

http://opengameart.org/content/metalstone-textures





          

      

      

    

  

  
    
    License
    

    
 
  

    
      
          
            
  
License

Published by Spiney under
http://creativecommons.org/licenses/by/3.0/

http://opengameart.org/content/metalstone-textures





          

      

      

    

  

  
    
    License
    

    
 
  

    
      
          
            
  
License

crate.png is distributed under CC-BY. Basically you can use this work anywhere and in any way you want. More information about license type can be found here: http://creativecommons.org/licenses/by/2.0/


Contact

James White

http://twitter/unitycat/

letartbefree@hotmail.com







          

      

      

    

  

  
    
    License
    

    
 
  

    
      
          
            
  
License

Provided by Nobiax.

CC0 Absolutely free to use or to modify in any kind of work (personal, commercial or else).

nobiax.deviantart.com
OpenGameArt.com
ShareCG.com





          

      

      

    

  

  
    
    License
    

    
 
  

    
      
          
            
  
License

http://opengameart.org/content/industrial-extension-pack-4-more-tanks
Provided by rubberduck.

CC0 Absolutely free to use or to modify in any kind of work (personal, commercial or else).





          

      

      

    

  

  
    
    License
    

    
 
  

    
      
          
            
  
License

http://opengameart.org/content/wood-texture-tiles
CC0 by 2016 JCW





          

      

      

    

  

  
    
    Installation
    

    
 
  

    
      
          
            
  @mainpage Main Page

@anchor mainpage

Welcome to the GlPortal documentation.
Check out the file \ref World.cpp to get to a central point.
Go to \ref glPortal::Game::update() to start at the game loop.


Installation

You can download a binary release from our website at http://glportal.de.

The source code can be downloaded from https://github.com/GlPortal/glPortal.

For instructions on how to build the game refer to \ref COMPILE.md in the document root.




Tools


Current issues can be found on github. Please sign up and report your issues there.Source code metrics can be found at http://metrics.glportal.de.

The output of the Static C/C++ code analysis can be found at http://check.glportal.de.






          

      

      

    

  

  
    
    Code of Conduct
    

    
 
  

    
      
          
            
  
Code of Conduct


Our Pledge

In the interest of fostering an open and welcoming environment, we as contributors and maintainers pledge to making participation in our project and our community a harassment-free experience for everyone, regardless of age, body size, disability, ethnicity, gender identity and expression, level of experience, nationality, personal appearance, race, religion, or sexual identity and orientation.




Our Standards

Examples of behavior that contributes to creating a positive environment include:


	Using welcoming and inclusive language


	Being respectful of differing viewpoints and experiences


	Gracefully accepting constructive criticism


	Focusing on what is best for the community


	Showing empathy towards other community members




Examples of unacceptable behavior by participants include:


	The use of sexualized language or imagery and unwelcome sexual attention or advances


	Trolling, insulting/derogatory comments, and personal or political attacks


	Public or private harassment


	Publishing others’ private information, such as a physical or electronic address, without explicit permission


	Other conduct which could reasonably be considered inappropriate in a professional setting







Our Responsibilities

Project maintainers are responsible for clarifying the standards of acceptable behavior and are expected to take appropriate and fair corrective action in response to any instances of unacceptable behavior.

Project maintainers have the right and responsibility to remove, edit, or reject comments, commits, code, wiki edits, issues, and other contributions that are not aligned to this Code of Conduct, or to ban temporarily or permanently any contributor for other behaviors that they deem inappropriate, threatening, offensive, or harmful.




Scope

This Code of Conduct applies both within project spaces and in public spaces when an individual is representing the project or its community. Examples of representing a project or community include using an official project e-mail address, posting via an official social media account, or acting as an appointed representative at an online or offline event. Representation of a project may be further defined and clarified by project maintainers.




Enforcement

Instances of abusive, harassing, or otherwise unacceptable behavior may be reported by contacting the project team in gitter or irc. The project team will review and investigate all complaints, and will respond in a way that it deems appropriate to the circumstances. The project team is obligated to maintain confidentiality with regard to the reporter of an incident. Further details of specific enforcement policies may be posted separately.

Project maintainers who do not follow or enforce the Code of Conduct in good faith may face temporary or permanent repercussions as determined by other members of the project’s leadership.




Attribution

This Code of Conduct is adapted from the Contributor Covenant [http://contributor-covenant.org], version 1.4, available at http://contributor-covenant.org/version/1/4 [http://contributor-covenant.org/version/1/4/]







          

      

      

    

  

  
    
    Coding Guidelines
    

    
 
  

    
      
          
            
  
Coding Guidelines


Stick to the principles of Object Oriented Design

Read more about this wonderful concept here [http://www.c2.com/cgi/wiki?PrinciplesOfObjectOrientedDesign].




Leave the code cleaner than you have found it




Use comments to describe the why, not the how




Conventions


File encoding and line endings


	The source files may be restricted to ASCII encoding, or use UTF-8 without BOM
(this warning specifically targets developers using Windows).


	Line endings may be LF or CRLF, although the former is preferred. CR line endings are not valid.


	Encoding conversion macros (L"", _T(""), T(""), …) are considered a plague and will be rejected
(unless they are in platform-dependent source files which only gets compiled on those platforms).







Preprocessor


Include guards

Include guards have an uppercase name reflecting the current header file name, and are terminated by _HPP.

They are not to be prefixed or suffixed by any underscore.

In fact, all global names (that includes defines) starting with one underscore and a capital letter or two underscores
are reserved by the C and C++ standard.
As of the 2012-01-16 C++11 Working Draft, this is specified in 17.6.4.3.2/1 [global.names].

(Yet, many developers keep using this bad practice)

As a side note for MSVC developers: #pragma once isn’t an include guard and can’t replace it. It can supplement
it but be aware that it has no effect on sensible compilers (which have an include guard optimization, effectively
nullifying the need for those pragmas), i.e. not MSVC.
Except for Windows-specific source files, any file only containing it will be rejected.






Indentation, whitespace and line length


	An indentation level = two spaces. Tabs aren’t considered a consistent identation method.


	Empty lines are not to be indented, i.e. really empty.


	There may not be more than 2 consecutive empty lines.


	Namespace blocks does not indent, nor are switch’s case labels.


	When additional identation would make the code more legible (e.g. chained variable declarations),
more spaces can be added if their count is low; else, just increase the identation level by one.


	Trailing whitespace isn’t allowed.


	Maximum line length is 100 UTF-8 codepoints. In layman terms, 100 characters.




namespace radix {

void func() {
  int i = 0;
  switch (i) {
  case 0:
    break;
  default:
    break;
  }

  // The following is correct, additional whitespace is low
  int a = 1,
      b = 2,
      c = 3;

  // The following isn't correct, too much whitespace
  std::unique_ptr<int> ptrA(new int),
                       ptrB(new int);

  // Use the following instead:
  std::unique_ptr<int> ptrC(new int), ptrD(new int), ptrE(new int), ptrF(new int), ptrG(new int),
    ptrH(new int);
  // Here, the line wrapped because we hit the 100-character limit
}

} /* namespace radix */








Pointer and References

Pointer/reference mark sticks to the variable name (not function name),
or when there is no variable name, to the type itself.

Type var1, *var2, &var3 = thing;
Type* getPtr(Type *namedParm);
Type& getRef(UnnamedParm*);

// The following is inherently stupid legibility-wise:
Type *idiotGetPtr(Type *namedParm);
// because it doesn't return Type, it returns Type* !








Blocks of code


	Always open a new block of code after a control structure


	Open them on the line of the control statement


	Put code on the next line




if (cond) {
  code();
}

// The following is bad:
if (cond)
{
  code();
}

if (cond)
  code();

if (cond) code();













          

      

      

    

  

  
    
    Compile Guide for RadixEngine
    

    
 
  

    
      
          
            
  
Compile Guide for RadixEngine


Quick note if you are compiling for the first time

Well done. You made the right decision. It’s not even that hard.




Dependencies

NOTE: Dependencies will change all the time so watch the cmake output carefuly for missing libraries.
Make sure to check CMakeLists.txt if it is something missing.




Upgrade your OS

You will need very recent versions of all the dependencies. So please upgrade your OS before proceeding.


	Upgrade Debian [https://wiki.debian.org/DebianUpgrade]


	Upgrade Ubuntu [http://www.ubuntu.com/download/desktop/upgrade]


	Upgrade Mint [https://community.linuxmint.com/tutorial/view/2]


	Upgrade Arch [https://wiki.archlinux.org/index.php/Pacman#Upgrading_packages]







List of dependencies


	assimp


	epoxy


	sdl2


	sdl2-mixer


	bullet >=2.82+


	tinyxml2


	libgl


	freeimg


	cmake >=2.8 (make)


	make (make)


	gcc (make)


	pkg-config (make)


	git (download source code)


	libunittest++ (optional, for tests)







Installing dependencies

Remember, you have to be root, so you might want to prefix sudo.


Windows

Install msys2 [http://msys2.github.io/].


on 32-bit

Launch the Mingw-w64 Win32 shell from the start menu. In it, type:

pacman -S git pkg-config mingw-w64-i686-{cmake,make,gcc,pkg-config,assimp,libepoxy,SDL2{,_mixer},bullet,tinyxml2,freeimage}








on 64-bit

Launch the Mingw-w64 Win64 shell from the start menu. In it, type:

pacman -S git pkg-config mingw-w64-x86_64-{cmake,make,gcc,pkg-config,assimp,libepoxy,SDL2{,_mixer},bullet,tinyxml2,freeimage}










Arch Linux

pacman -S cmake make gcc pkg-config assimp libepoxy sdl2{,_mixer} bullet mesa tinyxml2 freeimage








Debian 8 / Ubuntu 14.04 / Linux Mint 17.x

apt-get install cmake make gcc pkg-config lib{assimp,epoxy,sdl2{,-mixer},bullet,tinyxml2,gl1-mesa,unittest++,freeimage}-dev








Debian 9 / Ubuntu 17.04 / Linux Mint 18.x

apt-get install cmake make gcc pkg-config lib{assimp,epoxy,sdl2{,-mixer},bullet,tinyxml2,gl1-mesa,unittest++,freeimageplus}-dev








Others

Now how will you satisfy these dependencies? No problem. You might notice that when you
are looking for them in your package manager that you get overwhelmed by a list of possible
installation candidates, how do you know which one is the right one?

An easy rule that applies to many libraries is that a library has the lib prefix and then,
since you want to install the files for development there is a dev in the name.
Pretty much like libfoo-dev for most libraries.








Downloading source code

In your favorite console, run these commands:

git clone https://github.com/GlPortal/RadixEngine.git
cd RadixEngine
git submodule init
git submodule update








Building the binary

Make sure to check the README.org and COMPILE.org from the release you downloaded in case
there are differences in the compile workflow for it.

In the root directory of the downloaded source type:

mkdir build && cd build
cmake ..





NOTE: On Windows, please use cmake .. -G "MSYS Makefiles" instead.

If you want to profile the source code pass -DCMAKE_CXX_FLAGS=-pg to cmake.
Now if this throws an error you have to fix something first. If you don’t manage to fix the error, use the
bugtracker linked below.

If the command did not produce an error, you can build the binary by typing in:

make





If this produces no error you have built the binary and should be able to link it with a project, e.g. GlPortal.

If you get errors, try to build Radix again. If you don’t manage to fix the error, use the
bugtracker https://github.com/GlPortal/RadixEngine/issues or http://bugs.glportal.de to report what you did, and what error you got.




Keep us posted

Not working? No worries! Help us help you figure out what we missed to make this work on
your system by opening an issue.





          

      

      

    

  

  
    
    GlPortal Contribution Guide
    

    
 
  

    
      
          
            
  
GlPortal Contribution Guide


All

If you want to become part of the team or you need help, please say hi in gitter [https://gitter.im/GlPortal/glPortal?utm_source=badge&utm_medium=badge&utm_campaign=pr-badge&utm_content=badge] or irc [http://webchat.freenode.net/?channels=%23glportal&uio=d4].




Developer


	Follow the compile guide [https://github.com/GlPortal/glPortal/blob/master/COMPILE.md] to compile the game.


	Check the bugtracker [https://bugs.glportal.de/] for tasks you want to do or add your own.


	Send a pull request on github.







Artist


	Contact us through gitter or irc.





Composers


	Check our music guidelines [https://github.com/GlPortal/specification/blob/master/music.md].


	Optionaly add your note-sheets to our repository [https://github.com/GlPortal/music].


	Add your licence and tracks to raw data repository [https://github.com/GlPortal/glportal_raw_data/tree/master/audio/music].









Quality Control


	If there is anything wrong with a commit do one of the following


	Only if you can’t fix it yourself comment objectively on the commit and tell the commiter exactly what the commit breaks. If you don’t do this polite don’t expect anyone to listen to you or aknowledge your existence.


	Implement the change yourself and if you are not sure if everybody will agree then propose the change as a pull request (either way the chance to travel back in time is implied by git so mistakes are not to be treated as a catastrophy. If you want to do that you should work on center stage in a theater not on an open source project).











Writers


	Create a github account


	Learn how to use github in the browser [https://help.github.com/articles/github-flow-in-the-browser/]


	Learn how to edit files in other peoples repository [https://help.github.com/articles/editing-files-in-another-user-s-repository/]










          

      

      

    

  

  
    
    zlib License
    

    
 
  

    
      
          
            
  
zlib License

Copyright (c) 2016-2018 RadixEngine Team

This software is provided ‘as-is’, without any express or implied
warranty. In no event will the authors be held liable for any damages
arising from the use of this software.

Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it
freely, subject to the following restrictions:


	The origin of this software must not be misrepresented; you must not
claim that you wrote the original software. If you use this software
in a product, an acknowledgment in the product documentation would be
appreciated but is not required.


	Altered source versions must be plainly marked as such, and must not be
misrepresented as being the original software.


	This notice may not be removed or altered from any source
distribution.








          

      

      

    

  

  
    
    The Team
    

    
 
  

    
      
          
            
  [image: Build Status] [https://travis-ci.org/GlPortal/RadixEngine]
[image: Coverage Status] [https://coveralls.io/github/GlPortal/RadixEngine?branch=HEAD]
[image: RadixEngine subreddit] [https://www.reddit.com/r/RadixEngine/]
[image: Chat on Gitter] [https://gitter.im/GlPortal/glPortal]

[image: zlib License] [image: Language: C++14] [image: Documentation Status] [http://radix-spec.glportal.de/en/latest/]

[image: RadixEngine]

Radix is a modern, free and open-source 3D game engine, featuring, among other things, physics simulation.
It runs on all modern operating systems including GNU/Linux, Mac and Windows.


The Team

Henry Hirsch, Julian Thijssen, Dorian Wouters, Geert Custers all contributors [https://github.com/GlPortal/RadixEngine/graphs/contributors]




Compile the source

For instructions on how to compile the game engine please read COMPILE.md.




Join the team

Chat with us at irc.freenode.org in the channel #glportal [http://webchat.freenode.net/?channels=%23glportal&uio=d4]
for questions and discussions about the development of the game.
Report Issues to github [https://github.com/GlPortal/RadixEngine/issues].




Donate

Donate Bitcoin to 1JxrwJZgV9qBeEPH7BDF9qLJPSDcp6fqxz to help us pay for hosting and domain names.

Support Henry through patreon [https://www.patreon.com/developerHenry] or liberapay [https://liberapay.com/Henry].





          

      

      

    

  

  
    
    RadixEntity
    

    
 
  

    
      
          
            
  
RadixEntity

Game engine Entity property/method/signal framework with reflection.

(Basically dbus for games’ entities)

Used in the RadixEngine [https://github.com/GlPortal/RadixEngine] game engine.





          

      

      

    

  

  
    
    What’s the Catch?
    

    
 
  

    
      
          
            
  [image: catch logo]

v1.7.2

Build status (on Travis CI) [image: Build Status] [https://travis-ci.org/philsquared/Catch]

The latest, single header, version can be downloaded directly using this link


What’s the Catch?

Catch stands for C++ Automated Test Cases in Headers and is a multi-paradigm automated test framework for C++ and Objective-C (and, maybe, C). It is implemented entirely in a set of header files, but is packaged up as a single header for extra convenience.




How to use it

This documentation comprises these three parts:


	Why do we need yet another C++ Test Framework?


	Tutorial - getting started


	Reference section - all the details







More


	Issues and bugs can be raised on the Issue tracker on GitHub [https://github.com/philsquared/Catch/issues]


	For discussion or questions please use the dedicated Google Groups forum [https://groups.google.com/forum/?fromgroups#!forum/catch-forum]


	See who else is using Catch








          

      

      

    

  

  
    
    Description
    

    
 
  

    
      
          
            
  
Description


  
    
    Description
    

    
 
  

    
      
          
            
  
Description




GitHub Issues


  
    
    <no title>
    

    
 
  

    
      
          
            
  These are the currently documented areas of the framework. There is more to come.

Before looking at this material be sure to read the tutorial


	Assertion macros


	Matchers


	Logging macros


	Test cases and sections


	Test fixtures


	Command line


	Build systems


	Supplying your own main()


	Configuration


	String Conversions


	Why are my tests slow to compile?


	Known limitations




Other


	Why Catch?


	Open Source Projects using Catch


	Contributing


	Release Notes






          

      

      

    

  

  
    
    Assertion Macros
    

    
 
  

    
      
          
            
  
Assertion Macros

Most test frameworks have a large collection of assertion macros to capture all possible conditional forms (_EQUALS, _NOTEQUALS, _GREATER_THAN etc).

Catch is different. Because it decomposes natural C-style conditional expressions most of these forms are reduced to one or two that you will use all the time. That said there are a rich set of auxilliary macros as well. We’ll describe all of these here.

Most of these macros come in two forms:


Natural Expressions

The REQUIRE family of macros tests an expression and aborts the test case if it fails.
The CHECK family are equivalent but execution continues in the same test case even if the assertion fails. This is useful if you have a series of essentially orthogonal assertions and it is useful to see all the results rather than stopping at the first failure.


	REQUIRE( expression ) and


	CHECK( expression )




Evaluates the expression and records the result. If an exception is thrown it is caught, reported, and counted as a failure. These are the macros you will use most of  the time

Examples:

CHECK( str == "string value" );
CHECK( thisReturnsTrue() );
REQUIRE( i == 42 );






	REQUIRE_FALSE( expression ) and


	CHECK_FALSE( expression )




Evaluates the expression and records the logical NOT of the result. If an exception is thrown it is caught, reported, and counted as a failure.
(these forms exist as a workaround for the fact that ! prefixed expressions cannot be decomposed).

Example:

REQUIRE_FALSE( thisReturnsFalse() );





Do note that “overly complex” expressions cannot be decomposed and thus will not compile. This is done partly for practical reasons (to keep the underlying expression template machinery to minimum) and partly for philosophical reasons (assertions should be simple and deterministic).

Examples:


	CHECK(a == 1 && b == 2);
This expression is too complex because of the && operator. If you want to check that 2 or more properties hold, you can either put the expression into parenthesis, which stops decomposition from working, or you need to decompose the expression into two assertions: CHECK( a == 1 ); CHECK( b == 2);


	CHECK( a == 2 || b == 1 );
This expression is too complex because of the || operator. If you want to check that one of several properties hold, you can put the expression into parenthesis (unlike with &&, expression decomposition into several CHECKs is not possible).





Floating point comparisons

When comparing floating point numbers - especially if at least one of them has been computed - great care must be taken to allow for rounding errors and inexact representations.

Catch provides a way to perform tolerant comparisons of floating point values through use of a wrapper class called Approx. Approx can be used on either side of a comparison expression. It overloads the comparisons operators to take a tolerance into account. Here’s a simple example:

REQUIRE( performComputation() == Approx( 2.1 ) );





By default a small epsilon value is used that covers many simple cases of rounding errors. When this is insufficent the epsilon value (the amount within which a difference either way is ignored) can be specified by calling the epsilon() method on the Approx instance. e.g.:

REQUIRE( 22/7 == Approx( 3.141 ).epsilon( 0.01 ) );





When dealing with very large or very small numbers it can be useful to specify a scale, which can be achieved by calling the scale() method on the Approx instance.






Exceptions


	REQUIRE_NOTHROW( expression ) and


	CHECK_NOTHROW( expression )




Expects that no exception is thrown during evaluation of the expression.


	REQUIRE_THROWS( expression ) and


	CHECK_THROWS( expression )




Expects that an exception (of any type) is be thrown during evaluation of the expression.


	REQUIRE_THROWS_AS( expression, exception type ) and


	CHECK_THROWS_AS( expression, exception type )




Expects that an exception of the specified type is thrown during evaluation of the expression.


	REQUIRE_THROWS_WITH( expression, string or string matcher ) and


	CHECK_THROWS_WITH( expression, string or string matcher )




Expects that an exception is thrown that, when converted to a string, matches the string or string matcher provided (see next section for Matchers).

e.g.

REQUIRE_THROWS_WITH( openThePodBayDoors(), Contains( "afraid" ) && Contains( "can't do that" ) );
REQUIRE_THROWS_WITH( dismantleHal(), "My mind is going" );





Please note that the THROW family of assertions expects to be passed a single expression, not a statement or series of statements. If you want to check a more complicated sequence of operations, you can use a C++11 lambda function.

REQUIRE_NOTHROW([&](){
    int i = 1;
    int j = 2;
    auto k = i + j;
    if (k == 3) {
        throw 1;
    }
}());








Matcher expressions

To support Matchers a slightly different form is used. Matchers have their own documentation.


	REQUIRE_THAT( lhs, matcher expression ) and


	CHECK_THAT( lhs, matcher expression )




Matchers can be composed using &&, || and ! operators.



Home







          

      

      

    

  

  
    
    Integration with build systems
    

    
 
  

    
      
          
            
  
Integration with build systems

Build Systems may refer to low-level tools, like CMake, or larger systems that run on servers, like Jenkins or TeamCity. This page will talk about both.




Continuous Integration systems

Probably the most important aspect to using Catch with a build server is the use of different reporters. Catch comes bundled with three reporters that should cover the majority of build servers out there - although adding more for better integration with some is always a possibility (currently we also offer TeamCity, TAP and Automake reporters).

Two of these reporters are built in (XML and JUnit) and the third (TeamCity) is included as a separate header. It’s possible that the other two may be split out in the future too - as that would make the core of Catch smaller for those that don’t need them.


XML Reporter

-r xml

The XML Reporter writes in an XML format that is specific to Catch.

The advantage of this format is that it corresponds well to the way Catch works (especially the more unusual features, such as nested sections) and is a fully streaming format - that is it writes output as it goes, without having to store up all its results before it can start writing.

The disadvantage is that, being specific to Catch, no existing build servers understand the format natively. It can be used as input to an XSLT transformation that could covert it to, say, HTML - although this loses the streaming advantage, of course.




JUnit Reporter

-r junit

The JUnit Reporter writes in an XML format that mimics the JUnit ANT schema.

The advantage of this format is that the JUnit Ant schema is widely understood by most build servers and so can usually be consumed with no additional work.

The disadvantage is that this schema was designed to correspond to how JUnit works - and there is a significant mismatch with how Catch works. Additionally the format is not streamable (because opening elements hold counts of failed and passing tests as attributes) - so the whole test run must complete before it can be written.




Other reporters

Other reporters are not part of the single-header distribution and need to be downloaded and included separately. All reporters are stored in include/reporters directory in the git repository, and are named catch_reporter_*.hpp. For example, to use the TeamCity reporter you need to download include/reporters/catch_reporter_teamcity.hpp and include it after Catch itself.

#define CATCH_CONFIG_MAIN
#include "catch.hpp"
#include "catch_reporter_teamcity.hpp"






TeamCity Reporter

-r teamcity

The TeamCity Reporter writes TeamCity service messages to stdout. In order to be able to use this reporter an additional header must also be included.

Being specific to TeamCity this is the best reporter to use with it - but it is completely unsuitable for any other purpose. It is a streaming format (it writes as it goes) - although test results don’t appear in the TeamCity interface until the completion of a suite (usually the whole test run).




Automake Reporter

-r automake

The Automake Reporter writes out the meta tags [https://www.gnu.org/software/automake/manual/html_node/Log-files-generation-and-test-results-recording.html#Log-files-generation-and-test-results-recording] expected by automake via make check.




TAP (Test Anything Protocol) Reporter

-r tap

Because of the incremental nature of Catch’s test suites and ability to run specific tests, our implementation of TAP reporter writes out the number of tests in a suite last.








Low-level tools


CMake

You can use the following CMake script to automatically fetch Catch from github and configure it as an external project:

cmake_minimum_required(VERSION 2.8.8)
project(catch_builder CXX)
include(ExternalProject)
find_package(Git REQUIRED)

ExternalProject_Add(
    catch
    PREFIX ${CMAKE_BINARY_DIR}/catch
    GIT_REPOSITORY https://github.com/philsquared/Catch.git
    TIMEOUT 10
    UPDATE_COMMAND ${GIT_EXECUTABLE} pull
    CONFIGURE_COMMAND ""
    BUILD_COMMAND ""
    INSTALL_COMMAND ""
    LOG_DOWNLOAD ON
   )

# Expose required variable (CATCH_INCLUDE_DIR) to parent scope
ExternalProject_Get_Property(catch source_dir)
set(CATCH_INCLUDE_DIR ${source_dir}/single_include CACHE INTERNAL "Path to include folder for Catch")





If you put it in, e.g., ${PROJECT_SRC_DIR}/${EXT_PROJECTS_DIR}/catch/, you can use it in your project by adding the following to your root CMake file:

# Includes Catch in the project:
add_subdirectory(${EXT_PROJECTS_DIR}/catch)
include_directories(${CATCH_INCLUDE_DIR} ${COMMON_INCLUDES})
enable_testing(true)  # Enables unit-testing.







Home







          

      

      

    

  

  
    
    Specifying which tests to run
    

    
 
  

    
      
          
            
  Catch works quite nicely without any command line options at all - but for those times when you want greater control the following options are available.
Click one of the followings links to take you straight to that option - or scroll on to browse the available options.

               <test-spec> ...

                                       -h, -?, --help

   -l, --list-tests

   -t, --list-tags

        -s, --success

                  -b, --break

        -e, --nothrow

                                  -i, --invisibles

                    -o, --out

                  -r, --reporter

                           -n, --name

 -a, --abort

 -x, --abortx

                                    -w, --warn

                           -d, --durations

                                  -f, --input-file

                                 -c, --section

                           -#, --filenames-as-tags



  
    
    Commercial users of Catch
    

    
 
  

    
      
          
            
  
Commercial users of Catch

As well as Open Source users Catch is widely used within proprietary code bases too. Many companies like to keep this
information internal, and that’s fine, but if you’re more open it would be great if we could list the names of as
many organisations as possible that use Catch somewhere in their codebase. Enterprise environments often tend to be
far more conservative in their tool adoption - and being aware that other companies are using Catch can ease the
path in.

So if you are aware of Catch usage in your organisation, and are fairly confident there is no issue with sharing this
fact then please let us know - either directly, via a PR or issue [https://github.com/philsquared/Catch/issues], or on the forums [https://groups.google.com/forum/?fromgroups#!forum/catch-forum].


	Bloomberg








          

      

      

    

  

  
    
    main()/ implementation
    

    
 
  

    
      
          
            
  Catch is designed to “just work” as much as possible. For most people the only configuration needed is telling Catch which source file should host all the implementation code (CATCH_CONFIG_MAIN).

Nonetheless there are still some occasions where finer control is needed. For these occasions Catch exposes a set of macros for configuring how it is built.


main()/ implementation

CATCH_CONFIG_MAIN   // Designates this as implementation file and defines main()
CATCH_CONFIG_RUNNER // Designates this as implementation file





Although Catch is header only it still, internally, maintains a distinction between interface headers and headers that contain implementation. Only one source file in your test project should compile the implementation headers and this is controlled through the use of one of these macros - one of these identifiers should be defined before including Catch in exactly one implementation file in your project.




Prefixing Catch macros

CATCH_CONFIG_PREFIX_ALL





To keep test code clean and uncluttered Catch uses short macro names (e.g. TEST_CASE and REQUIRE). Occasionally these may conflict with identifiers from platform headers or the system under test. In this case the above identifier can be defined. This will cause all the Catch user macros to be prefixed with CATCH_ (e.g. CATCH_TEST_CASE and CATCH_REQUIRE).




Terminal colour

CATCH_CONFIG_COLOUR_NONE    // completely disables all text colouring
CATCH_CONFIG_COLOUR_WINDOWS // forces the Win32 console API to be used
CATCH_CONFIG_COLOUR_ANSI    // forces ANSI colour codes to be used





Yes, I am English, so I will continue to spell “colour” with a ‘u’.

When sending output to the terminal, if it detects that it can, Catch will use colourised text. On Windows the Win32 API, SetConsoleTextAttribute, is used. On POSIX systems ANSI colour escape codes are inserted into the stream.

For finer control you can define one of the above identifiers (these are mutually exclusive - but that is not checked so may behave unexpectedly if you mix them):

Note that when ANSI colour codes are used “unistd.h” must be includable - along with a definition of isatty()

Typically you should place the #define before #including “catch.hpp” in your main source file - but if you prefer you can define it for your whole project by whatever your IDE or build system provides for you to do so.




Console width

CATCH_CONFIG_CONSOLE_WIDTH = x // where x is a number





Catch formats output intended for the console to fit within a fixed number of characters. This is especially important as indentation is used extensively and uncontrolled line wraps break this.
By default a console width of 80 is assumed but this can be controlled by defining the above identifier to be a different value.




stdout

CATCH_CONFIG_NOSTDOUT





Catch does not use std::cout and std::cerr directly but gets them from Catch::cout() and Catch::cerr() respectively. If the above identifier is defined these functions are left unimplemented and you must implement them yourself. Their signatures are:

std::ostream& cout();
std::ostream& cerr();





This can be useful on certain platforms that do not provide std::cout and std::cerr, such as certain embedded systems.




C++ conformance toggles

CATCH_CONFIG_CPP11_NULLPTR              // nullptr is supported?
CATCH_CONFIG_CPP11_NOEXCEPT             // noexcept is supported?
CATCH_CONFIG_CPP11_GENERATED_METHODS    // delete and default keywords for methods
CATCH_CONFIG_CPP11_IS_ENUM              // std::is_enum is supported?
CATCH_CONFIG_CPP11_TUPLE                // std::tuple is supported
CATCH_CONFIG_VARIADIC_MACROS            // Usually pre-C++11 compiler extensions are sufficient
CATCH_CONFIG_CPP11_LONG_LONG            // generates overloads for the long long type
CATCH_CONFIG_CPP11_OVERRIDE             // CATCH_OVERRIDE expands to override (for virtual function implementations)
CATCH_CONFIG_CPP11_UNIQUE_PTR           // Use std::unique_ptr instead of std::auto_ptr
CATCH_CONFIG_CPP11_SHUFFLE              // Use std::shuffle instead of std::random_shuffle
CATCH_CONFIG_CPP11_TYPE_TRAITS          // Use std::enable_if and <type_traits>





Catch has some basic compiler detection that will attempt to select the appropriate mix of these macros. However being incomplete - and often without access to the respective compilers - this detection tends to be conservative.
So overriding control is given to the user. If a compiler supports a feature (and Catch does not already detect it) then one or more of these may be defined to enable it (or suppress it, in some cases). If you do do this please raise an issue, specifying your compiler version (ideally with an idea of how to detect it) and stating that it has such support.
You may also suppress any of these features by using the _NO_ form, e.g. CATCH_CONFIG_CPP11_NO_NULLPTR.

All C++11 support can be disabled with CATCH_CONFIG_NO_CPP11




Other toggles

CATCH_CONFIG_COUNTER                    // Use __COUNTER__ to generate unique names for test cases
CATCH_CONFIG_WINDOWS_SEH                // Enable SEH handling on Windows
CATCH_CONFIG_FAST_COMPILE               // Sacrifices some (extremely minor) features for compilation speed
CATCH_CONFIG_POSIX_SIGNALS              // Enable handling POSIX signals
CATCH_CONFIG_WINDOWS_CRTDBG             // Enable leak checking using Windows's CRT Debug Heap





Currently Catch enables CATCH_CONFIG_WINDOWS_SEH only when compiled with MSVC, because some versions of MinGW do not have the necessary Win32 API support.

At this moment, CATCH_CONFIG_FAST_COMPILE changes only the behaviour of the -b (--break) flag, making it break into debugger in a stack frame below the actual test, unlike the default behaviour, where the break into debugger occurs in the same stack frame as the actual test. CATCH_CONFIG_FAST_COMPILE has to be either defined, or not defined, in all translation units that are linked into single test binary, or the behaviour of setting -b flag will be unpredictable.

CATCH_CONFIG_POSIX_SIGNALS is on by default, except when Catch is compiled under Cygwin, where it is disabled by default (but can be force-enabled by defining CATCH_CONFIG_POSIX_SIGNALS).

CATCH_CONFIG_WINDOWS_CRTDBG is off by default. If enabled, Windows’s CRT is used to check for memory leaks, and displays them after the tests finish running.

Just as with the C++11 conformance toggles, these toggles can be disabled by using _NO_ form of the toggle, e.g. CATCH_CONFIG_NO_WINDOWS_SEH.




Windows header clutter

On Windows Catch includes windows.h. To minimize global namespace clutter in the implementation file, it defines NOMINMAX and WIN32_LEAN_AND_MEAN before including it. You can control this behaviour via two macros:

CATCH_CONFIG_NO_NOMINMAX            // Stops Catch from using NOMINMAX macro 
CATCH_CONFIG_NO_WIN32_LEAN_AND_MEAN // Stops Catch from using WIN32_LEAN_AND_MEAN macro







Home





          

      

      

    

  

  
    
    Contributing to Catch
    

    
 
  

    
      
          
            
  
Contributing to Catch

So you want to contribute something to Catch? That’s great! Whether it’s a bug fix, a new feature, support for
additional compilers - or just a fix to the documentation - all contributions are very welcome and very much appreciated.
Of course so are bug reports and other comments and questions.

If you are contributing to the code base there are a few simple guidelines to keep in mind. This also includes notes to
help you find your way around. As this is liable to drift out of date please raise an issue or, better still, a pull
request for this file, if you notice that.


Branches

Ongoing development is currently on master. At some point an integration branch will be set-up and PRs should target
that - but for now it’s all against master. You may see feature branches come and go from time to time, too.




Directory structure

Users of Catch primarily use the single header version. Maintainers should work with the full source (which is still,
primarily, in headers). This can be found in the include folder. There are a set of test files, currently under
projects/SelfTest. The test app can be built via CMake from the CMakeLists.txt file in the root, or you can generate
project files for Visual Studio, XCode, and others (instructions in the projects folder). If you have access to CLion
that can work with the CMake file directly.

As well as the runtime test files you’ll also see a SurrogateCpps directory under projects/SelfTest.
This contains a set of .cpp files that each #include a single header.
While these files are not essential to compilation they help to keep the implementation headers self-contained.
At time of writing this set is not complete but has reasonable coverage.
If you add additional headers please try to remember to add a surrogate cpp for it.

The other directories are scripts which contains a set of python scripts to help in testing Catch as well as
generating the single include, and docs, which contains the documentation as a set of markdown files.

When submitting a pull request please do not include changes to the single include, or to the version number file
as these are managed by the scripts!

this document is still in-progress…



Home







          

      

      

    

  

  
    
    Known limitations
    

    
 
  

    
      
          
            
  
Known limitations

Catch has some known limitations, that we are not planning to change. Some of these are caused by our desire to support C++98 compilers, some of these are caused by our desire to keep Catch crossplatform, some exist because their priority is seen as low compared to the development effort they would need and some other yet are compiler/runtime bugs.


Features

This section outlines some missing features, what is their status and their possible workarounds.


Thread safe assertions

Because threading support in standard C++98 is limited (well, non-existent), assertion macros in Catch are not thread safe. This does not mean that you cannot use threads inside Catch’s test, but that only single thread can interact with Catch’s assertions and other macros.

This means that this is ok

    std::vector<std::thread> threads;
    std::atomic<int> cnt{ 0 };
    for (int i = 0; i < 4; ++i) {
        threads.emplace_back([&]() {
            ++cnt; ++cnt; ++cnt; ++cnt;
        });
    }
    for (auto& t : threads) { t.join(); }
    REQUIRE(cnt == 16);





because only one thread passes the REQUIRE macro and this is not

    std::vector<std::thread> threads;
    std::atomic<int> cnt{ 0 };
    for (int i = 0; i < 4; ++i) {
        threads.emplace_back([&]() {
            ++cnt; ++cnt; ++cnt; ++cnt;
            CHECK(cnt == 16);
        });
    }
    for (auto& t : threads) { t.join(); }
    REQUIRE(cnt == 16);





This limitation is highly unlikely to be lifted before Catch 2 is released.




Process isolation in a test

Catch does not support running tests in isolated (forked) processes. While this might in the future, the fact that Windows does not support forking and only allows full-on process creation and the desire to keep code as similar as possible across platforms, mean that this is likely to take significant development time, that is not currently available.




Running multiple tests in parallel

Catch’s test execution is strictly serial. If you find yourself with a test suite that takes too long to run and you want to make it parallel, there are 2 feasible solutions


	You can split your tests into multiple binaries and then run these binaries in parallel.


	You can have Catch list contained test cases and then run the same test binary multiple times in parallel, passing each instance list of test cases it should run.




Both of these solutions have their problems, but should let you wring parallelism out of your test suite.






3rd party bugs

This section outlines known bugs in 3rd party components (this means compilers, standard libraries, standard runtimes).


Visual Studio 2013 – do-while loop withing range based for fails to compile (C2059)

There is a known bug in Visual Studio 2013 (VC 12), that causes compilation error if range based for is followed by an assertion macro, without enclosing the block in braces. This snippet is sufficient to trigger the error

#define CATCH_CONFIG_MAIN
#include "catch.hpp"

TEST_CASE("Syntax error with VC12") {
    for ( auto x : { 1 , 2, 3 } )
        REQUIRE( x < 3.14 );
}





An easy workaround is possible, use braces:

#define CATCH_CONFIG_MAIN
#include "catch.hpp"

TEST_CASE("No longer a syntax error with VC12") {
    for ( auto x : { 1 , 2, 3 } ) {
        REQUIRE( x < 3.14 );
    }
}








Visual Studio 2003 – Syntax error caused by improperly expanded __LINE__ macro

Older version of Visual Studio can have trouble compiling Catch, not expanding the __LINE__ macro properly when recompiling the test binary. This is caused by Edit and Continue being on.

A workaround is to turn off Edit and Continue when compiling the test binary.




Clang/G++ – skipping leaf sections after an exception

Some versions of libc++ and libstdc++ (or their runtimes) have a bug with std::uncaught_exception() getting stuck returning true after rethrow, even if there are no active exceptions. One such case is this snippet, which skipped the sections “a” and “b”, when compiled against libcxxrt from master

#define CATCH_CONFIG_MAIN
#include <catch.hpp>

TEST_CASE("a") {
    CHECK_THROWS(throw 3);
}

TEST_CASE("b") {
    int i = 0;
    SECTION("a") { i = 1; }
    SECTION("b") { i = 2; }
    CHECK(i > 0);
}





If you are seeing a problem like this, i.e. a weird test paths that trigger only under Clang with libc++, or only under very specific version of libstdc++, it is very likely you are seeing this. The only known workaround is to use a fixed version of your standard library.









          

      

      

    

  

  
    
    Logging macros
    

    
 
  

    
      
          
            
  
Logging macros

Additional messages can be logged during a test case.


Streaming macros

All these macros allow heterogenous sequences of values to be streaming using the insertion operator (<<) in the same way that std::ostream, std::cout, etc support it.

E.g.:

INFO( "The number is " << i );





(Note that there is no initial << - instead the insertion sequence is placed in parentheses.)
These macros come in three forms:

INFO( message expression )

The message is logged to a buffer, but only reported with the next assertion that is logged. This allows you to log contextual information in case of failures which is not shown during a successful test run (for the console reporter, without -s). Messages are removed from the buffer at the end of their scope, so may be used, for example, in loops.

WARN( message expression )

The message is always reported but does not fail the test.

FAIL( message expression )

The message is reported and the test case fails.




Quickly capture a variable value

CAPTURE( expression )

Sometimes you just want to log the name and value of a variable. While you can easily do this with the INFO macro, above, as a convenience the CAPTURE macro handles the stringising of the variable name for you (actually it works with any expression, not just variables).

E.g.

CAPTURE( theAnswer );





This would log something like:

"theAnswer := 42"



Deprecated macros

SCOPED_INFO and SCOPED_CAPTURE

These macros are now deprecated and are just aliases for INFO and CAPTURE (which were not previously scoped).



Home







          

      

      

    

  

  
    
    Matchers
    

    
 
  

    
      
          
            
  
Matchers

Matchers are an alternative way to do assertions which are easily extensible and composable.
This makes them well suited to use with more complex types (such as collections) or your own custom types.
Matchers were first popularised by the Hamcrest [https://en.wikipedia.org/wiki/Hamcrest] family of frameworks.


In use

Matchers are introduced with the REQUIRE_THAT or CHECK_THAT macros, which take two arguments.
The first argument is the thing (object or value) under test. The second part is a match expression,
which consists of either a single matcher or one or more matchers combined using &&, || or ! operators.

For example, to assert that a string ends with a certain substring:

std::string str = getStringFromSomewhere();
REQUIRE_THAT( str, EndsWith( "as a service" ) ); 





The matcher objects can take multiple arguments, allowing more fine tuning.
The built-in string matchers, for example, take a second argument specifying whether the comparison is
case sensitive or not:

REQUIRE_THAT( str, EndsWith( "as a service", Catch::CaseSensitive::No ) ); 





And matchers can be combined:

REQUIRE_THAT( str, 
    EndsWith( "as a service" ) || 
    (StartsWith( "Big data" ) && !Contains( "web scale" ) ) ); 








Built in matchers

Currently Catch has some string matchers and some vector matchers.
The string matchers are StartsWith, EndsWith, Contains and Equals. Each of them also takes an optional second argument, that decides case sensitivity (by-default, they are case sensitive).
The vector matchers are Contains, VectorContains and Equals. VectorContains looks for a single element in the matched vector, Contains looks for a set (vector) of elements inside the matched vector.




Custom matchers

It’s easy to provide your own matchers to extend Catch or just to work with your own types.

You need to provide two things:


	A matcher class, derived from Catch::MatcherBase<T> - where T is the type being tested.
The constructor takes and stores any arguments needed (e.g. something to compare against) and you must
override two methods: match() and describe().


	A simple builder function. This is what is actually called from the test code and allows overloading.




Here’s an example for asserting that an integer falls within a given range
(note that it is all inline for the sake of keeping the example short):

// The matcher class
class IntRange : public Catch::MatcherBase<int> {
    int m_begin, m_end;
public:
    IntRange( int begin, int end ) : m_begin( begin ), m_end( end ) {}

    // Performs the test for this matcher
    virtual bool match( int const& i ) const override {
        return i >= m_begin && i <= m_end;
    }

    // Produces a string describing what this matcher does. It should
    // include any provided data (the begin/ end in this case) and
    // be written as if it were stating a fact (in the output it will be
    // preceded by the value under test).
    virtual std::string describe() const {
        std::ostringstream ss;
        ss << "is between " << m_begin << " and " << m_end;
        return ss.str();
    }
};

// The builder function
inline IntRange IsBetween( int begin, int end ) {
    return IntRange( begin, end );
}

// ...

// Usage
TEST_CASE("Integers are within a range")
{
    CHECK_THAT( 3, IsBetween( 1, 10 ) );
    CHECK_THAT( 100, IsBetween( 1, 10 ) );
}





Running this test gives the following in the console:

/**/TestFile.cpp:123: FAILED:
  CHECK_THAT( 100, IsBetween( 1, 10 ) )
with expansion:
  100 is between 1 and 10







Home







          

      

      

    

  

  
    
    Open Source projects using Catch
    

    
 
  

    
      
          
            
  
Open Source projects using Catch

Catch is great for open source. With it’s liberal license and single-header, dependency-free, distribution
it’s easy to just drop the header into your project and start writing tests - what’s not to like?

As a result Catch is now being used in many Open Source projects, including some quite well known ones.
This page is an attempt to track those projects. Obviously it can never be complete.
This effort largely relies on the maintainers of the projects themselves updating this page and submitting a PR
(or, if you prefer contact one of the maintainers of Catch directly, use the
forums [https://groups.google.com/forum/?fromgroups#!forum/catch-forum]), or raise an issue [https://github.com/philsquared/Catch/issues] to let us know).
Of course users of those projects might want to update this page too. That’s fine - as long you’re confident the project maintainers won’t mind.
If you’re an Open Source project maintainer and see your project listed here but would rather it wasn’t -
just let us know via any of the previously mentioned means - although I’m sure there won’t be many who feel that way.

Listing a project here does not imply endorsement and the plan is to keep these ordered alphabetically to avoid an implication of relative importance.


Libraries & Frameworks


Azmq [https://github.com/zeromq/azmq]

Boost Asio style bindings for ZeroMQ




ChakraCore [https://github.com/Microsoft/ChakraCore]

The core part of the Chakra Javascript engine that powers Microsoft Edge




ChaiScript [https://github.com/ChaiScript/ChaiScript]

A, header-only, embedded scripting language designed from the ground up to directly target C++ and take advantage of modern C++ development techniques




Couchbase-lite-core [https://github.com/couchbase/couchbase-lite-core]

The next-generation core storage and query engine for Couchbase Lite/




JSON for Modern C++ [https://github.com/nlohmann/json]

A, single-header, JSON parsing library that takes advantage of what C++ has to offer.




MNMLSTC Core [https://github.com/mnmlstc/core]

a small and easy to use C++11 library that adds a functionality set that will be available in C++14 and later, as well as some useful additions




SOCI [https://github.com/SOCI/soci]

The C++ Database Access Library




Ppconsul [https://github.com/oliora/ppconsul]

A C++ client library for Consul. Consul is a distributed tool for discovering and configuring services in your infrastructure




Reactive-Extensions/ RxCpp [https://github.com/Reactive-Extensions/RxCpp]

A library of algorithms for values-distributed-in-time




Trompeloeil [https://github.com/rollbear/trompeloeil]

A thread safe header only mocking framework for C++14






Applications & Tools


MAME [https://github.com/mamedev/mame]

MAME originally stood for Multiple Arcade Machine Emulator




Standardese [https://github.com/foonathan/standardese]

Standardese aims to be a nextgen Doxygen



Home









          

      

      

    

  

  
    
    Supplying main() yourself
    

    
 
  

    
      
          
            
  
Supplying main() yourself

The easiest way to use Catch is to let it supply main() for you and handle configuring itself from the command line.

This is achieved by writing #define CATCH_CONFIG_MAIN before the #include "catch.hpp" in exactly one source file.

Sometimes, though, you need to write your own version of main(). You can do this by writing #define CATCH_CONFIG_RUNNER instead. Now you are free to write main() as normal and call into Catch yourself manually.

You now have a lot of flexibility - but here are three recipes to get your started:


Let Catch take full control of args and config

If you just need to have code that executes before and/ or after Catch this is the simplest option.

#define CATCH_CONFIG_RUNNER
#include "catch.hpp"

int main( int argc, char* argv[] )
{
  // global setup...

  int result = Catch::Session().run( argc, argv );

  // global clean-up...

  return ( result < 0xff ? result : 0xff );
}








Amending the config

If you still want Catch to process the command line, but you want to programatically tweak the config, you can do so in one of two ways:

#define CATCH_CONFIG_RUNNER
#include "catch.hpp"

int main( int argc, char* argv[] )
{
  Catch::Session session; // There must be exactly one instance

  // writing to session.configData() here sets defaults
  // this is the preferred way to set them

  int returnCode = session.applyCommandLine( argc, argv );
  if( returnCode != 0 ) // Indicates a command line error
    return returnCode;

  // writing to session.configData() or session.Config() here 
  // overrides command line args
  // only do this if you know you need to

  int numFailed = session.run();
  // Note that on unices only the lower 8 bits are usually used, clamping
  // the return value to 255 prevents false negative when some multiple
  // of 256 tests has failed
  return ( numFailed < 0xff ? numFailed : 0xff );
}





Take a look at the definitions of Config and ConfigData to see what you can do with them.

To take full control of the config simply omit the call to applyCommandLine().




Adding your own command line options

Catch embeds a powerful command line parser which you can also use to parse your own options out. This capability is still in active development but will be documented here when it is ready.



Home







          

      

      

    

  

  
    
    1.7.2
    

    
 
  

    
      
          
            
  
1.7.2


Fixes and minor improvements

Xml:

(technically the first two are breaking changes but are also fixes and arguably break few if any people)


	C-escape control characters instead of XML encoding them (which requires XML 1.1)


	Revert XML output to XML 1.0


	Can provide stylesheet references by extending the XML reporter


	Added description and tags attribites to XML Reporter


	Tags are closed and the stream flushed more eagerly to avoid stdout interpolation




Other:


	REQUIRE_THROWS_AS now catches exception by const& and reports expected type


	In SECTIONs the file/ line is now of the SECTION. not the TEST_CASE


	Added std:: qualification to some functions from C stdlib


	Removed use of RTTI (dynamic_cast) that had crept back in


	Silenced a few more warnings in different circumstances


	Travis improvements









1.7.1


Fixes:


	Fixed inconsistency in defining NOMINMAX and WIN32_LEAN_AND_MEAN inside catch.hpp.


	Fixed SEH-related compilation error under older MinGW compilers, by making Windows SEH handling opt-in for compilers other than MSVC.


	For specifics, look into the documentation.






	Fixed compilation error under MinGW caused by improper compiler detection.


	Fixed XML reporter sometimes leaving an empty output file when a test ends with signal/structured exception.


	Fixed XML reporter not reporting captured stdout/stderr.


	Fixed possible infinite recursion in Windows SEH.


	Fixed possible compilation error caused by Catch’s operator overloads being ambiguous in regards to user-defined templated operators.









Older versions

Release notes were not maintained prior to v1.6.0, but you should be able to work them out from the Git history


1.7.0


Features/ Changes:


	Catch now runs significantly faster for passing tests


	Microbenchmark focused on Catch’s overhead went from ~3.4s to ~0.7s.


	Real world test using JSON for Modern C++ [https://github.com/nlohmann/json]’s test suite went from ~6m 25s to ~4m 14s.






	Catch can now run specific sections within test cases.


	For now the support is only basic (no wildcards or tags), for details see the documentation.






	Catch now supports SEH on Windows as well as signals on Linux.


	After receiving a signal, Catch reports failing assertion and then passes the signal onto the previous handler.






	Approx can be used to compare values against strong typedefs (available in C++11 mode only).


	Strong typedefs mean types that are explicitly convertible to double.






	CHECK macro no longer stops executing section if an exception happens.


	Certain characters (space, tab, etc) are now pretty printed.


	This means that a char c = ' '; REQUIRE(c == '\t'); would be printed as ' ' == '\t', instead of == 9.











Fixes:


	Text formatting no longer attempts to access out-of-bounds characters under certain conditions.


	THROW family of assertions no longer trigger -Wunused-value on expressions containing explicit cast.


	Breaking into debugger under OS X works again and no longer required DEBUG to be defined.


	Compilation no longer breaks under certain compiler if a lambda is used inside assertion macro.







Other:


	Catch’s CMakeLists now defines install command.


	Catch’s CMakeLists now generates projects with warnings enabled.









1.6.1


Features/ Changes:


	Catch now supports breaking into debugger on Linux







Fixes:


	Generators no longer leak memory (generators are still unsupported in general)


	JUnit reporter now reports UTC timestamps, instead of “tbd”


	CHECK_THAT macro is now properly defined as CATCH_CHECK_THAT when using CATCH_ prefixed macros







Other:


	Types with overloaded && operator are no longer evaluated twice when used in an assertion macro.


	The use of __COUNTER__ is supressed when Catch is parsed by CLion


	This change is not active when compiling a binary






	Approval tests can now be run on Windows


	CMake will now warn if a file is present in the include folder but not is not enumerated as part of the project


	Catch now defines NOMINMAX and WIN32_LEAN_AND_MEAN before including windows.h


	This can be disabled if needed, see documentation for details.













1.6.0


Cmake/ projects:


	Moved CMakeLists.txt to root, made it friendlier for CLion and generating XCode and VS projects, and removed the manually maintained XCode and VS projects.







Features/ Changes:


	Approx now supports >= and <=


	Can now use \ to escape chars in test names on command line


	Standardize C++11 feature toggles







Fixes:


	Blue shell colour


	Missing argument to CATCH_CHECK_THROWS


	Don’t encode extended ASCII in XML


	use std::shuffle on more compilers (fixes deprecation warning/error)


	Use __COUNTER__ more consistently (where available)







Other:


	Tweaks and changes to scripts - particularly for Approval test - to make them more portable






Home









          

      

      

    

  

  
    
    Why do my tests take so long to compile?
    

    
 
  

    
      
          
            
  
Why do my tests take so long to compile?

Several people have reported that test code written with Catch takes much longer to compile than they would expect. Why is that?

Catch is implemented entirely in headers. There is a little overhead due to this - but not as much as you might think - and you can minimise it simply by organising your test code as follows:


Short answer

Exactly one source file must #define either CATCH_CONFIG_MAIN or CATCH_CONFIG_RUNNER before #include-ing Catch. In this file do not write any test cases! In most cases that means this file will just contain two lines (the #define and the #include).




Long answer

Usually C++ code is split between a header file, containing declarations and prototypes, and an implementation file (.cpp) containing the definition, or implementation, code. Each implementation file, along with all the headers that it includes (and which those headers include, etc), is expanded into a single entity called a translation unit - which is then passed to the compiler and compiled down to an object file.

But functions and methods can also be written inline in header files. The downside to this is that these definitions will then be compiled in every translation unit that includes the header.

Because Catch is implemented entirely in headers you might think that the whole of Catch must be compiled into every translation unit that uses it! Actually it’s not quite as bad as that. Catch mitigates this situation by effectively maintaining the traditional separation between the implementation code and declarations. Internally the implementation code is protected by #ifdefs and is conditionally compiled into only one translation unit. This translation unit is that one that #defines CATCH_CONFIG_MAIN or CATCH_CONFIG_RUNNER. Let’s call this the main source file.

As a result the main source file does compile the whole of Catch every time! So it makes sense to dedicate this file to only #define-ing the identifier and #include-ing Catch (and implementing the runner code, if you’re doing that). Keep all your test cases in other files. This way you won’t pay the recompilation cost for the whole of Catch




Practical example

Assume you have the Factorial function from the tutorial in factorial.cpp (with forward declaration in factorial.h) and want to test it and keep the compile times down when adding new tests. Then you should have 2 files, tests-main.cpp and tests-factorial.cpp:

// tests-main.cpp
#define CATCH_CONFIG_MAIN
#include "catch.hpp"





// tests-factorial.cpp
#include "catch.hpp"

#include "factorial.h"

TEST_CASE( "Factorials are computed", "[factorial]" ) {
    REQUIRE( Factorial(1) == 1 );
    REQUIRE( Factorial(2) == 2 );
    REQUIRE( Factorial(3) == 6 );
    REQUIRE( Factorial(10) == 3628800 );
}





After compiling tests-main.cpp once, it is enough to link it with separately compiled tests-factorial.cpp. This means that adding more tests to tests-factorial.cpp, will not result in recompiling Catch’s main and the resulting compilation times will decrease substantially.

$ g++ tests-main.cpp -c
$ g++ tests-main.o tests-factorial.cpp -o tests && ./tests -r compact
Passed 1 test case with 4 assertions.





Now, the next time we change the file tests-factorial.cpp (say we add REQUIRE( Factorial(0) == 1)), it is enough to recompile the tests instead of recompiling main as well:

$ g++ tests-main.o tests-factorial.cpp -o tests && ./tests -r compact
tests-factorial.cpp:11: failed: Factorial(0) == 1 for: 0 == 1
Failed 1 test case, failed 1 assertion.








Other possible solutions

You can also opt to sacrifice some features in order to speed-up Catch’s compilation times. For details see the documentation on Catch’s compile-time configuration.



Home







          

      

      

    

  

  
    
    Test cases and sections
    

    
 
  

    
      
          
            
  
Test cases and sections

While Catch fully supports the traditional, xUnit, style of class-based fixtures containing test case methods this is not the preferred style.

Instead Catch provides a powerful mechanism for nesting test case sections within a test case. For a more detailed discussion see the tutorial.

Test cases and sections are very easy to use in practice:


	TEST_CASE( test name [, tags ] )


	SECTION( section name )




test name and section name are free form, quoted, strings. The optional tags argument is a quoted string containing one or more tags enclosed in square brackets. Tags are discussed below. Test names must be unique within the Catch executable.

For examples see the Tutorial


Tags

Tags allow an arbitrary number of additional strings to be associated with a test case. Test cases can be selected (for running, or just for listing) by tag - or even by an expression that combines several tags. At their most basic level they provide a simple way to group several related tests together.

As an example - given the following test cases:

TEST_CASE( "A", "[widget]" ) { /* ... */ }
TEST_CASE( "B", "[widget]" ) { /* ... */ }
TEST_CASE( "C", "[gadget]" ) { /* ... */ }
TEST_CASE( "D", "[widget][gadget]" ) { /* ... */ }





The tag expression, "[widget]" selects A, B & D. "[gadget]" selects C & D. "[widget][gadget]" selects just D and "[widget],[gadget]" selects all four test cases.

For more detail on command line selection see the command line docs

Tag names are not case sensitive.


Special Tags

All tag names beginning with non-alphanumeric characters are reserved by Catch. Catch defines a number of “special” tags, which have meaning to the test runner itself. These special tags all begin with a symbol character. Following is a list of currently defined special tags and their meanings.


	[!hide] or [.] (or, for legacy reasons, [hide]) - causes test cases to be skipped from the default list (i.e. when no test cases have been explicitly selected through tag expressions or name wildcards). The hide tag is often combined with another, user, tag (for example [.][integration] - so all integration tests are excluded from the default run but can be run by passing [integration] on the command line). As a short-cut you can combine these by simply prefixing your user tag with a . - e.g. [.integration]. Because the hide tag has evolved to have several forms, all forms are added as tags if you use one of them.


	[!throws]   - lets Catch know that this test is likely to throw an exception even if successful. This causes the test to be excluded when running with -e or --nothrow.


	[!shouldfail] - reverse the failing logic of the test: if the test is successful if it fails, and vice-versa.


	[!mayfail] - doesn’t fail the test if any given assertion fails (but still reports it). This can be useful to flag a work-in-progress, or a known issue that you don’t want to immediately fix but still want to track in the your tests.


	[!nonportable] - Indicates that behaviour may vary between platforms or compilers.


	[#<filename>] - running with -# or --filenames-as-tags causes Catch to add the filename, prefixed with # (and with any extension stripped) as a tag. e.g. tests in testfile.cpp would all be tagged [#testfile].


	[@<alias>] - tag aliases all begin with @ (see below).









Tag aliases

Between tag expressions and wildcarded test names (as well as combinations of the two) quite complex patterns can be constructed to direct which test cases are run. If a complex pattern is used often it is convenient to be able to create an alias for the expression. this can be done, in code, using the following form:

CATCH_REGISTER_TAG_ALIAS( <alias string>, <tag expression> )





Aliases must begin with the @ character. An example of a tag alias is:

CATCH_REGISTER_TAG_ALIAS( "[@nhf]", "[failing]~[.]" )





Now when [@nhf] is used on the command line this matches all tests that are tagged [failing], but which are not also hidden.




BDD-style test cases

In addition to Catch’s take on the classic style of test cases, Catch supports an alternative syntax that allow tests to be written as “executable specifications” (one of the early goals of Behaviour Driven Development [http://dannorth.net/introducing-bdd/]). This set of macros map on to TEST_CASEs and SECTIONs, with a little internal support to make them smoother to work with.


	SCENARIO( scenario name [, tags ] )




This macro maps onto TEST_CASE and works in the same way, except that the test case name will be prefixed by “Scenario: “


	GIVEN( something )


	WHEN( something )


	THEN( something )




These macros map onto SECTIONs except that the section names are the _something_s prefixed by “given: “, “when: ” or “then: ” respectively.


	AND_WHEN( something )


	AND_THEN( something )




Similar to WHEN and THEN except that the prefixes start with “and “. These are used to chain WHENs and THENs together.

When any of these macros are used the console reporter recognises them and formats the test case header such that the Givens, Whens and Thens are aligned to aid readability.

Other than the additional prefixes and the formatting in the console reporter these macros behave exactly as TEST_CASEs and SECTIONs. As such there is nothing enforcing the correct sequencing of these macros - that’s up to the programmer!



Home







          

      

      

    

  

  
    
    <no title>
    

    
 
  

    
      
          
            
  Although Catch allows you to group tests together as sections within a test case, it can still be convenient, sometimes, to group them using a more traditional test fixture. Catch fully supports this too. You define the test fixture as a simple structure:

class UniqueTestsFixture {
  private:
   static int uniqueID;
  protected:
   DBConnection conn;
  public:
   UniqueTestsFixture() : conn(DBConnection::createConnection("myDB")) {
   }
  protected:
   int getID() {
     return ++uniqueID;
   }
 };

 int UniqueTestsFixture::uniqueID = 0;

 TEST_CASE_METHOD(UniqueTestsFixture, "Create Employee/No Name", "[create]") {
   REQUIRE_THROWS(conn.executeSQL("INSERT INTO employee (id, name) VALUES (?, ?)", getID(), ""));
 }
 TEST_CASE_METHOD(UniqueTestsFixture, "Create Employee/Normal", "[create]") {
   REQUIRE(conn.executeSQL("INSERT INTO employee (id, name) VALUES (?, ?)", getID(), "Joe Bloggs"));
 }





The two test cases here will create uniquely-named derived classes of UniqueTestsFixture and thus can access the getID() protected method and conn member variables. This ensures that both the test cases are able to create a DBConnection using the same method (DRY principle) and that any ID’s created are unique such that the order that tests are executed does not matter.



Home



          

      

      

    

  

  
    
    String conversions
    

    
 
  

    
      
          
            
  
String conversions

Catch needs to be able to convert types you use in assertions and logging expressions into strings (for logging and reporting purposes).
Most built-in or std types are supported out of the box but there are three ways that you can tell Catch how to convert your own types (or other, third-party types) into strings.


operator << overload for std::ostream

This is the standard way of providing string conversions in C++ - and the chances are you may already provide this for your own purposes. If you’re not familiar with this idiom it involves writing a free function of the form:

std::ostream& operator << ( std::ostream& os, T const& value ) {
    os << convertMyTypeToString( value );
    return os;
}





(where T is your type and convertMyTypeToString is where you’ll write whatever code is necessary to make your type printable - it doesn’t have to be in another function).

You should put this function in the same namespace as your type.

Alternatively you may prefer to write it as a member function:

std::ostream& T::operator << ( std::ostream& os ) const {
    os << convertMyTypeToString( *this );
    return os;
}








Catch::toString overload

If you don’t want to provide an operator << overload, or you want to convert your type differently for testing purposes, you can provide an overload for Catch::toString() for your type.

namespace Catch {
    std::string toString( T const& value ) {
        return convertMyTypeToString( value );
    }
}





Again T is your type and convertMyTypeToString is where you’ll write whatever code is necessary to make your type printable. Note that the function must be in the Catch namespace, which itself must be in the global namespace.




Catch::StringMaker specialisation
  
    
    Getting Catch
    

    
 
  

    
      
          
            
  
Getting Catch

The simplest way to get Catch is to download the latest single header version [https://raw.githubusercontent.com/philsquared/Catch/master/single_include/catch.hpp]. The single header is generated by merging a set of individual headers but it is still just normal source code in a header file.

The full source for Catch, including test projects, documentation, and other things, is hosted on GitHub. http://catch-lib.net will redirect you there.


Where to put it?

Catch is header only. All you need to do is drop the file(s) somewhere reachable from your project - either in some central location you can set your header search path to find, or directly into your project tree itself! This is a particularly good option for other Open-Source projects that want to use Catch for their test suite. See this blog entry for more on that [http://www.levelofindirection.com/journal/2011/5/27/unit-testing-in-c-and-objective-c-just-got-ridiculously-easi.html].

The rest of this tutorial will assume that the Catch single-include header (or the include folder) is available unqualified - but you may need to prefix it with a folder name if necessary.






Writing tests

Let’s start with a really simple example. Say you have written a function to calculate factorials and now you want to test it (let’s leave aside TDD for now).

unsigned int Factorial( unsigned int number ) {
    return number <= 1 ? number : Factorial(number-1)*number;
}





To keep things simple we’ll put everything in a single file (see later for more on how to structure your test files)

#define CATCH_CONFIG_MAIN  // This tells Catch to provide a main() - only do this in one cpp file
#include "catch.hpp"

unsigned int Factorial( unsigned int number ) {
    return number <= 1 ? number : Factorial(number-1)*number;
}

TEST_CASE( "Factorials are computed", "[factorial]" ) {
    REQUIRE( Factorial(1) == 1 );
    REQUIRE( Factorial(2) == 2 );
    REQUIRE( Factorial(3) == 6 );
    REQUIRE( Factorial(10) == 3628800 );
}





This will compile to a complete executable which responds to command line arguments. If you just run it with no arguments it will execute all test cases (in this case there is just one), report any failures, report a summary of how many tests passed and failed and return the number of failed tests (useful for if you just want a yes/ no answer to: “did it work”).

If you run this as written it will pass. Everything is good. Right?
Well, there is still a bug here. In fact the first version of this tutorial I posted here genuinely had the bug in! So it’s not completely contrived (thanks to Daryle Walker (@CTMacUser) for pointing this out).

What is the bug? Well what is the factorial of zero?
The factorial of zero is one [http://mathforum.org/library/drmath/view/57128.html] - which is just one of those things you have to know (and remember!).

Let’s add that to the test case:

TEST_CASE( "Factorials are computed", "[factorial]" ) {
    REQUIRE( Factorial(0) == 1 );
    REQUIRE( Factorial(1) == 1 );
    REQUIRE( Factorial(2) == 2 );
    REQUIRE( Factorial(3) == 6 );
    REQUIRE( Factorial(10) == 3628800 );
}





Now we get a failure - something like:

Example.cpp:9: FAILED:
  REQUIRE( Factorial(0) == 1 )
with expansion:
  0 == 1





Note that we get the actual return value of Factorial(0) printed for us (0) - even though we used a natural expression with the == operator. That let’s us immediately see what the problem is.

Let’s change the factorial function to:

unsigned int Factorial( unsigned int number ) {
  return number > 1 ? Factorial(number-1)*number : 1;
}





Now all the tests pass.

Of course there are still more issues to do deal with. For example we’ll hit problems when the return value starts to exceed the range of an unsigned int. With factorials that can happen quite quickly. You might want to add tests for such cases and decide how to handle them. We’ll stop short of doing that here.


What did we do here?

Although this was a simple test it’s been enough to demonstrate a few things about how Catch is used. Let’s take moment to consider those before we move on.


	All we did was #define one identifier and #include one header and we got everything - even an implementation of main() that will respond to command line arguments. You can only use that #define in one implementation file, for (hopefully) obvious reasons. Once you have more than one file with unit tests in you’ll just #include "catch.hpp" and go. Usually it’s a good idea to have a dedicated implementation file that just has #define CATCH_CONFIG_MAIN and #include "catch.hpp". You can also provide your own implementation of main and drive Catch yourself (see Supplying-your-own-main()).


	We introduce test cases with the TEST_CASE macro. This macro takes one or two arguments - a free form test name and, optionally, one or more tags (for more see Test cases and Sections, ). The test name must be unique. You can run sets of tests by specifying a wildcarded test name or a tag expression. See the command line docs for more information on running tests.


	The name and tags arguments are just strings. We haven’t had to declare a function or method - or explicitly register the test case anywhere. Behind the scenes a function with a generated name is defined for you, and automatically registered using static registry classes. By abstracting the function name away we can name our tests without the constraints of identifier names.


	We write our individual test assertions using the REQUIRE macro. Rather than a separate macro for each type of condition we express the condition naturally using C/C++ syntax. Behind the scenes a simple set of expression templates captures the left-hand-side and right-hand-side of the expression so we can display the values in our test report. As we’ll see later there are other assertion macros - but because of this technique the number of them is drastically reduced.









Test cases and sections

Most test frameworks have a class-based fixture mechanism. That is, test cases map to methods on a class and common setup and teardown can be performed in setup() and teardown() methods (or constructor/ destructor in languages, like C++, that support deterministic destruction).

While Catch fully supports this way of working there are a few problems with the approach. In particular the way your code must be split up, and the blunt granularity of it, may cause problems. You can only have one setup/ teardown pair across a set of methods, but sometimes you want slightly different setup in each method, or you may even want several levels of setup (a concept which we will clarify later on in this tutorial). It was problems like these that led James Newkirk, who led the team that built NUnit, to start again from scratch and build xUnit).

Catch takes a different approach (to both NUnit and xUnit) that is a more natural fit for C++ and the C family of languages. This is best explained through an example:

TEST_CASE( "vectors can be sized and resized", "[vector]" ) {

    std::vector<int> v( 5 );
    
    REQUIRE( v.size() == 5 );
    REQUIRE( v.capacity() >= 5 );
    
    SECTION( "resizing bigger changes size and capacity" ) {
        v.resize( 10 );
        
        REQUIRE( v.size() == 10 );
        REQUIRE( v.capacity() >= 10 );
    }
    SECTION( "resizing smaller changes size but not capacity" ) {
        v.resize( 0 );
        
        REQUIRE( v.size() == 0 );
        REQUIRE( v.capacity() >= 5 );
    }
    SECTION( "reserving bigger changes capacity but not size" ) {
        v.reserve( 10 );
        
        REQUIRE( v.size() == 5 );
        REQUIRE( v.capacity() >= 10 );
    }
    SECTION( "reserving smaller does not change size or capacity" ) {
        v.reserve( 0 );
        
        REQUIRE( v.size() == 5 );
        REQUIRE( v.capacity() >= 5 );
    }
}





For each SECTION the TEST_CASE is executed from the start - so as we enter each section we know that size is 5 and capacity is at least 5. We enforced those requirements with the REQUIREs at the top level so we can be confident in them.
This works because the SECTION macro contains an if statement that calls back into Catch to see if the section should be executed. One leaf section is executed on each run through a TEST_CASE. The other sections are skipped. Next time through the next section is executed, and so on until no new sections are encountered.

So far so good - this is already an improvement on the setup/teardown approach because now we see our setup code inline and use the stack.

The power of sections really shows, however, when we need to execute a sequence of, checked, operations. Continuing the vector example, we might want to verify that attempting to reserve a capacity smaller than the current capacity of the vector changes nothing. We can do that, naturally, like so:

    SECTION( "reserving bigger changes capacity but not size" ) {
        v.reserve( 10 );
        
        REQUIRE( v.size() == 5 );
        REQUIRE( v.capacity() >= 10 );
    
        SECTION( "reserving smaller again does not change capacity" ) {
            v.reserve( 7 );
            
            REQUIRE( v.capacity() >= 10 );
        }
    }





Sections can be nested to an arbitrary depth (limited only by your stack size). Each leaf section (i.e. a section that contains no nested sections) will be executed exactly once, on a separate path of execution from any other leaf section (so no leaf section can interfere with another). A failure in a parent section will prevent nested sections from running - but then that’s the idea.




BDD-Style

If you name your test cases and sections appropriately you can achieve a BDD-style specification structure. This became such a useful way of working that first class support has been added to Catch. Scenarios can be specified using SCENARIO, GIVEN, WHEN and THEN macros, which map on to TEST_CASEs and SECTIONs, respectively. For more details see Test cases and sections.

The vector example can be adjusted to use these macros like so:

SCENARIO( "vectors can be sized and resized", "[vector]" ) {

    GIVEN( "A vector with some items" ) {
        std::vector<int> v( 5 );
        
        REQUIRE( v.size() == 5 );
        REQUIRE( v.capacity() >= 5 );
        
        WHEN( "the size is increased" ) {
            v.resize( 10 );
            
            THEN( "the size and capacity change" ) {
                REQUIRE( v.size() == 10 );
                REQUIRE( v.capacity() >= 10 );
            }
        }
        WHEN( "the size is reduced" ) {
            v.resize( 0 );
            
            THEN( "the size changes but not capacity" ) {
                REQUIRE( v.size() == 0 );
                REQUIRE( v.capacity() >= 5 );
            }
        }
        WHEN( "more capacity is reserved" ) {
            v.reserve( 10 );
            
            THEN( "the capacity changes but not the size" ) {
                REQUIRE( v.size() == 5 );
                REQUIRE( v.capacity() >= 10 );
            }
        }
        WHEN( "less capacity is reserved" ) {
            v.reserve( 0 );
            
            THEN( "neither size nor capacity are changed" ) {
                REQUIRE( v.size() == 5 );
                REQUIRE( v.capacity() >= 5 );
            }
        }
    }
}





Conveniently, these tests will be reported as follows when run:

Scenario: vectors can be sized and resized
     Given: A vector with some items
      When: more capacity is reserved
      Then: the capacity changes but not the size










Scaling up

To keep the tutorial simple we put all our code in a single file. This is fine to get started - and makes jumping into Catch even quicker and easier. As you write more real-world tests, though, this is not really the best approach.

The requirement is that the following block of code (or equivalent):

#define CATCH_CONFIG_MAIN
#include "catch.hpp"





appears in exactly one source file. Use as many additional cpp files (or whatever you call your implementation files) as you need for your tests, partitioned however makes most sense for your way of working. Each additional file need only #include "catch.hpp" - do not repeat the #define!

In fact it is usually a good idea to put the block with the #define in its own source file.

Do not write your tests in header files!




Next steps

This has been a brief introduction to get you up and running with Catch, and to point out some of the key differences between Catch and other frameworks you may already be familiar with. This will get you going quite far already and you are now in a position to dive in and write some tests.

Of course there is more to learn - most of which you should be able to page-fault in as you go. Please see the ever-growing Reference section for what’s available.



Home







          

      

      

    

  

  
    
    Why do we need yet another C++ test framework?
    

    
 
  

    
      
          
            
  
Why do we need yet another C++ test framework?

Good question. For C++ there are quite a number of established frameworks, including (but not limited to), CppUnit [http://sourceforge.net/apps/mediawiki/cppunit/index.php?title=Main_Page], Google Test [http://code.google.com/p/googletest/], Boost.Test [http://www.boost.org/doc/libs/1_49_0/libs/test/doc/html/index.html], Aeryn [https://launchpad.net/aeryn], Cute [http://r2.ifs.hsr.ch/cute], Fructose [http://fructose.sourceforge.net/] and many, many more [http://en.wikipedia.org/wiki/List_of_unit_testing_frameworks#C.2B.2B]. Even for Objective-C there are a few, including OCUnit - which now comes bundled with XCode.

So what does Catch bring to the party that differentiates it from these? Apart from a Catchy name, of course.


Key Features


	Really easy to get started. Just download catch.hpp, #include it and you’re away.


	No external dependencies. As long as you can compile C++98 and have a C++ standard library available.


	Write test cases as, self-registering, functions or methods.


	Divide test cases into sections, each of which is run in isolation (eliminates the need for fixtures!)


	Use BDD-style Given-When-Then sections as well as traditional unit test cases.


	Only one core assertion macro for comparisons. Standard C/C++ operators are used for the comparison - yet the full expression is decomposed and lhs and rhs values are logged.







Other core features


	Tests are named using free-form strings - no more couching names in legal identifiers.


	Tests can be tagged for easily running ad-hoc groups of tests.


	Failures can (optionally) break into the debugger on Windows and Mac.


	Output is through modular reporter objects. Basic textual and XML reporters are included. Custom reporters can easily be added.


	JUnit xml output is supported for integration with third-party tools, such as CI servers.


	A default main() function is provided (in a header), but you can supply your own for complete control (e.g. integration into your own test runner GUI).


	A command line parser is provided and can still be used if you choose to provided your own main() function.


	Catch can test itself.


	Alternative assertion macro(s) report failures but don’t abort the test case


	Floating point tolerance comparisons are built in using an expressive Approx() syntax.


	Internal and friendly macros are isolated so name clashes can be managed


	Support for Matchers (early stages)







Objective-C-specific features


	Automatically detects if you are using it from an Objective-C project


	Works with and without ARC with no additional configuration


	Implement test fixtures using Obj-C classes too (like OCUnit)


	Additional built in matchers that work with Obj-C types (e.g. string matchers)







Who else is using Catch?

See the list of open source projects using Catch.

See the tutorial to get more of a taste of using CATCH in practice



Home







          

      

      

    

  

  
    
    easy_profiler
    

    
 
  

    
      
          
            
  
easy_profiler [image: 1.2.0] [https://github.com/yse/easy_profiler/releases]

[image: Build Status] [https://travis-ci.org/yse/easy_profiler]
[image: Build Status] [https://ci.appveyor.com/project/yse/easy-profiler/branch/develop]

[image: License: MIT] [https://opensource.org/licenses/MIT]
[image: License] [https://www.apache.org/licenses/LICENSE-2.0]


	About


	Key features


	Usage


	Prepare build system


	General build system


	CMake






	Add profiling blocks


	Collect blocks


	Collect via network


	Collect via file


	Note about context-switch










	Build


	Linux


	Windows






	License







About

Lightweight cross-platform profiler library for c++

You can profile any function in you code. Furthermore this library provide measuring time of any block of code.
For example, information for 12 millions of blocks is using less than 300Mb of memory.
Working profiler slows your application execution for only 1-2%.

[image: Block time]
Average overhead per block is about 15ns/block (tested on Intel Core i7-5930K 3.5GHz, Win7)

Disabled profiler will not affect your application execution in any way. You can leave it in your Release build
and enable it at run-time at any moment during application launch to see what is happening at the moment.

Also the library can capture system’s context switch events between threads. Context switch information includes
duration, target thread id, thread owner process id, thread owner process name.

You can see the results of measuring in simple GUI application which provides full statistics and renders beautiful time-line.

[image: GUI screenshot]
Profiling CryEngine SDK example




Key features


	Extremely low overhead


	Low additional memory usage


	Cross-platform


	Measuring over network


	Capture thread context-switch events


	Fully remove integration via defines


	GUI could be connected to an application which is already profiling (so you can profile initialization of your application)


	Monitor main thread fps at real-time in GUI even if profiling is disabled or draw your own HUD/fps-plot directly in your application using data provided by profiler


	Configurable timer type with CMakeLists or defines







Usage


Prepare build system


General

First of all you can specify path to include directory which contains include/profiler directory and define macro BUILD_WITH_EASY_PROFILER.
For linking with easy_profiler you can specify path to library.




Build with cmake

If you are using cmake set CMAKE_PREFIX_PATH to lib/cmake/easy_profiler directory (from release [https://github.com/yse/easy_profiler/releases] package) and use function find_package(easy_profiler) with target_link_libraries(... easy_profiler). Example:

project(app_for_profiling)

set(SOURCES
    main.cpp
)

#CMAKE_PREFIX_PATH should be set to <easy_profiler-release_dir>/lib/cmake/easy_profiler
find_package(easy_profiler REQUIRED)

add_executable(app_for_profiling ${SOURCES})

target_link_libraries(app_for_profiling easy_profiler)










Add profiling blocks

Example of usage.

This code snippet will generate block with function name and Magenta color:

#include <easy/profiler.h>

void frame() {
    EASY_FUNCTION(profiler::colors::Magenta); // Magenta block with name "frame"
    prepareRender();
    calculatePhysics();
}





To profile any block you may do this as following.
You can specify these blocks also with Google material design colors or just set name of the block
(in this case it will have default color which is Amber100):

#include <easy/profiler.h>

void foo() {
    // some code
    EASY_BLOCK("Calculating sum"); // Block with default color
    int sum = 0;
    for (int i = 0; i < 10; ++i) {
        EASY_BLOCK("Addition", profiler::colors::Red); // Scoped red block (no EASY_END_BLOCK needed)
        sum += i;
    }
    EASY_END_BLOCK; // This ends "Calculating sum" block

    EASY_BLOCK("Calculating multiplication", profiler::colors::Blue500); // Blue block
    int mul = 1;
    for (int i = 1; i < 11; ++i)
        mul *= i;
    //EASY_END_BLOCK; // This is not needed because all blocks are ended on destructor when closing braces met
}





You can also use your own colors. easy_profiler is using standard 32-bit ARGB color format.
Example:

#include <easy/profiler.h>

void bar() {
    EASY_FUNCTION(0xfff080aa); // Function block with custom color
    // some code
}








Collect blocks

There are two ways to cature blocks


Collect via network

It’s most prefered and convenient approach in many case.


	Initialize listening by profiler::startListen(). It’s start new thread to listen on 28077 port the start-capture-signal from gui-application.


	To stop listening you can call profiler::stopListen() function.







Collect via file


	Enable profiler by EASY_PROFILER_ENABLE macro


	Dump blocks to file in any place you want by profiler::dumpBlocksToFile("test_profile.prof") function




Example:

int main()
{
    EASY_PROFILER_ENABLE;
    /* do work*/
    profiler::dumpBlocksToFile("test_profile.prof");
}








Note about context-switch

To capture a thread context-switch event you need:


	On Windows: run profiling application “as administrator”


	On linux: you can run special systemtap script with root privileges as follow (example on Fedora):




#stap -o /tmp/cs_profiling_info.log scripts/context_switch_logger.stp name APPLICATION_NAME





APPLICATION_NAME - name of profiling application








Build


Prerequisites

For core:


	compiler with c++11 support


	cmake 3.0 or higher




For GUI:


	Qt 5.3.0 or higher







Linux

$ mkdir build
$ cd build
$ cmake -DCMAKE_BUILD_TYPE="Release" ..
$ make








Windows

If you are using QtCreator IDE you can just open CMakeLists.txt file in root directory.
If you are using Visual Studio you can generate solution by cmake generator command.
Examples shows how to generate Win64 solution for Visual Studio 2013. To generate for another version use proper cmake generator (-G “name of generator”).


Way 1

Specify path to cmake scripts in Qt5 dir (usually in lib/cmake subdir) and execute cmake generator command,
for example:

$ mkdir build
$ cd build
$ cmake -DCMAKE_PREFIX_PATH="C:\Qt\5.3\msvc2013_64\lib\cmake" .. -G "Visual Studio 12 2013 Win64"








Way 2

Create system variable “Qt5Widgets_DIR” and set it’s value to “[path-to-Qt5-binaries]\lib\cmake\Qt5Widgets”.
For example, “C:\Qt\5.3\msvc2013_64\lib\cmake\Qt5Widgets”.
And then run cmake generator as follows:

$ mkdir build
$ cd build
$ cmake .. -G "Visual Studio 12 2013 Win64"












License

Licensed under either of


	MIT license (LICENSE.MIT or http://opensource.org/licenses/MIT)


	Apache License, Version 2.0, (LICENSE.APACHE or http://www.apache.org/licenses/LICENSE-2.0)




at your option.





          

      

      

    

  

  
    
    json11
    

    
 
  

    
      
          
            
  
json11

json11 is a tiny JSON library for C++11, providing JSON parsing and serialization.

The core object provided by the library is json11::Json. A Json object represents any JSON
value: null, bool, number (int or double), string (std::string), array (std::vector), or
object (std::map).

Json objects act like values. They can be assigned, copied, moved, compared for equality or
order, and so on. There are also helper methods Json::dump, to serialize a Json to a string, and
Json::parse (static) to parse a std::string as a Json object.

It’s easy to make a JSON object with C++11’s new initializer syntax:

Json my_json = Json::object {
    { "key1", "value1" },
    { "key2", false },
    { "key3", Json::array { 1, 2, 3 } },
};
std::string json_str = my_json.dump();





There are also implicit constructors that allow standard and user-defined types to be
automatically converted to JSON. For example:

class Point {
public:
    int x;
    int y;
    Point (int x, int y) : x(x), y(y) {}
    Json to_json() const { return Json::array { x, y }; }
};

std::vector<Point> points = { { 1, 2 }, { 10, 20 }, { 100, 200 } };
std::string points_json = Json(points).dump();





JSON values can have their values queried and inspected:

Json json = Json::array { Json::object { { "k", "v" } } };
std::string str = json[0]["k"].string_value();





More documentation is still to come. For now, see json11.hpp.





          

      

      

    

  

  
    
    cpp-linenoise
    

    
 
  

    
      
          
            
  
cpp-linenoise

Multi-platfrom (Unix, Windows) C++ header-only linenoise-based readline library.

This library gathered code from following excellent libraries, clean it up, and put it into a C++ header file for convenience.


	linenoise.h and linenose.c (antirez/linenoise [https://github.com/antirez/linenoise])


	ANSI.c (adoxa/ansicon [https://github.com/adoxa/ansicon])


	Win32_ANSI.h and Win32_ANSI.c (MSOpenTech/redis [https://github.com/MSOpenTech/redis])




The licenses for the libraries are included in linenoise.hpp.


Usage

#include "linenoise.hpp"

...

const auto path = "history.txt";

// Setup completion words every time when a user types
linenoise::SetCompletionCallback([](const char* editBuffer, std::vector<std::string>& completions) {
    if (editBuffer[0] == 'h') {
        completions.push_back("hello");
        completions.push_back("hello there");
    }
});

// Enable the multi-line mode
linenoise::SetMultiLine(true);

// Set max length of the history
linenoise::SetHistoryMaxLen(4);

// Load history
linenoise::LoadHistory(path);

while (true) {
    // Read line
    std::string line;
    auto quit = linenoise::Readline("hello> ", line);

    if (quit) {
        break;
    }

    cout <<  "echo: '" << line << "'" << endl;

    // Add text to history
    linenoise::AddHistory(line.c_str());
}

// Save history
linenoise::SaveHistory(path);








API

namespace linenoise;

std::string Readline(const char* prompt);

void SetMultiLine(bool multiLineMode);

typedef std::function<void (const char* editBuffer, std::vector<std::string>& completions)> CompletionCallback;

void SetCompletionCallback(CompletionCallback fn);

bool SetHistoryMaxLen(size_t len);

bool LoadHistory(const char* path);

bool SaveHistory(const char* path);

bool AddHistory(const char* line);

const std::vector<std::string>& GetHistory();








Tested compilers


	Visual Studio 2015


	Clang 3.5







License

BSD license (© 2015 Yuji Hirose)







          

      

      

    

  

  
    
    Serine
    

    
 
  

    
      
          
            
  
Serine

A lightweight (STL-only), header-only C++11, free and open source bidirectional serialization system.

Loosely based on Cereal [https://uscilab.github.io/cereal/]’s code syntax.


Features


	Supports 2 serialization paradigms:


	named data entries (e.g. for XML, JSON, BSON, MsgPack…)


	unnamed, linearly wrote/read data (tight packing)






	Different (de)serialization backends through inheritance and virtual methods.


	No templating of the serialization methods.


	Fully harnessing C++11’s power to only do a single data copy/read/write per operation, nullifying
potential run-time object copying overhead.


	Flexible lightweight data container wrappers (forward iterators) to allow for (de)serialization
of arrays, vectors, linked lists and more, regardless of their actual implementation.
(A default STL-compatible container wrapper is available through serine::contain_stl())







Extending

As to avoid templating, adding new non-struct/class type handling to an Archiver is not directly
possible. This can however be worked around by creating your own serine::Archiver-inheriting
base or real class, extend it to allow your new types [in/out]takes, as well as making your own
serine::Serializable-like interface, madating a serialize() method taking your new serializer
as parameter.




Limitations


	As Serine’s syntax is both bidirectional and named, (de)serialization must both be statically
ordered and entry-named. This as well refrains you to bulk serialize data in the same fashion
Cereal allows for.


	Serine is only supposed to be a serialization structure, not a fully fledged data loading/saving
framework. As such, only basic memory/file-based serializers are available (as a default and
reference implementation). Applications are supposed to supply their own format handlers.







Notes

No 16-bit character/string serialization is provided (by default). This is intended, as using
16-bit chars most likely implies the usage of UTF-16, which takes the worst parts of both UTF-8
and UTF-32 and turns it into a horrid hybrid encoding.
Refer to utf8everywhere.org [http://utf8everywhere.org/] for more information.







          

      

      

    

  

  
    
    License
    

    
 
  

    
      
          
            
  
License

Copyright (c) 2011 Khaled Mamou (kmamou at gmail dot com)
All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:


	Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.


	Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.


	The names of the contributors may not be used to endorse or promote products derived from this software without specific prior written permission.




THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOW